Домой Отрыжка Влияние на организм сверхвысокочастотного электромагнитного (СВЧ-ЭМ) поля. В микроволновой печи скрывается мощное и опасное свч оружие

Влияние на организм сверхвысокочастотного электромагнитного (СВЧ-ЭМ) поля. В микроволновой печи скрывается мощное и опасное свч оружие

Развитие техники микроволн в последние два десятилетия способствовало внедрению их в физиотерапевтическую практику. Микроволны обладают рядом физических свойств, которые могут быть использованы для лечения некоторых заболеваний (например, псориаза , ревматизма и других аутоиммунных болезней). Свойства этих волн следующие: а) энергию их можно сконцентрировать на отдельных участках тела; б) они отражаются от плотных поверхностей; в) частота их близка к частоте релаксационных колебаний воды; г) они более термогенны, чем ультракороткие волны.

Под действием микроволн в тканях живого организма возникают колебания ионов и содержащихся в них дипольных молекул воды . Поглощение в тканях энергии волн за счет колебания ионов практически не зависит от частоты, поглощение же за счет колебаний дипольных молекул воды увеличивается с увеличением частоты. Однако это увеличение происходит до определенной для каждого тела молекул частоты (так называемая релаксационная частота). При более высоких частотах молекулы вследствие инертности не успевают уже реагировать на слишком частые изменения полей волны, а потому поглощение энергии волн резко уменьшается. Для молекул воды эта предельная частота релаксации около 2-10 гц (длина волны около 1,5 см). В силу этих особенностей по мере укорочения длины волны повышается роль молекул в общем поглощении энергии волн в тканях. В 10-сантиметровом диапазоне волн за счет колебаний молекул воды поглощается примерно половина общей энергии, а в 3-сантиметровом - уже 98%. Так как организм больше чем на половину состоит из воды, то понятно значение этого факта для действия микроволн, особенно для ткани с высоким содержанием воды (кровь, лимфа, мышцы, нервная система).

Микроволны обладают как термическим, так и экстратермическим действием. Впервые экстратермическое действие их на человека установил С. Я. Турлыгин, наблюдавший появление сонливости после воздействия сантиметровыми волнами очень малой интенсивности. В дальнейшем это было подтверждено многочисленными наблюдениями. У человека при систематическом воздействии микроволнами большой мощности на лицо наблюдается помутнение хрусталика, функциональные изменения нервной системы, нарушение функции зрительного и обонятельного анализаторов и т. д., что привело к необходимости установить в промышленности предельно допустимые дозы воздействия на человека в течение рабочего времени - не более 0,01 мвт/см2.

Общее воздействие на животных интенсивным полем СВЧ при ППМ (плотности потока мощности) 0,2-0,3 вт/см21 вызывает изменение дыхания, частоты сердечных сокращений и артериального давления, местные же воздействия при тех же условиях сопровождаются быстро проходящими изменениями гемодинамики и дыхания, очевидно рефлекторного происхождения. Регулирующее значение нервной системы при воздействии поля СВЧ выступает при перерезке блуждающих нервов у животных; при этом отмечают меньшее учащение дыхания, но более тяжелое гемодинамическое нарушение в результате выключения регулирующего влияния блуждающего нерва.

У лягушки поле СВЧ при 0,3 вт/см2 вызывает изменения сердечной деятельности, сходные с двухфазным эффектом электрического поля УВЧ. В первую фазу, иногда кратковременную, наблюдается учащение и усиление сердечных сокращений, за которой следует замедление и остановка сердечной деятельности в диастоле. После прекращения воздействия сокращения восстанавливаются; иногда наблюдают аритмии. Эти эффекты рассматривают как термические ввиду применявшейся в опытах высокой ППМ поля СВЧ.

Большое физиологическое значение имеет применение небольшой интенсивности поля СВЧ (ППМ 0,05 вт/см2, продолжительность 30 минут), когда у собак обычно отмечается небольшое учащение сердечного ритма и исчезновение дыхательной аритмии, у некоторых животных появляется урежение ритма. По данным электрокардиографии, при длительных многократных воздействиях полем СВЧ можно судить о включении компенсаторных механизмов и развития адаптации, которая может быть сорвана у собак более сильными воздействиями. Установленные изменения указывают на развитие временных дистрофических процессов в миокарде и их рассматривают как рефлекторные; в течение первого часа после воздействия эти изменения исчезают. У собак с искусственно вызванным инфарктом миокарда применение поля СВЧ вызывает учащение сердечного ритма, снижение всех зубцов электрокардиограммы в каждом отведении, интервал же S-Т приподнимается еще больше над изоэлектрической линией. Поле СВЧ ухудшает функции больного сердца.

При нормализации показателей функций сердца после перенесенного экспериментального инфаркта миокарда применение поля СВЧ слабой интенсивности вызывает у животных фазовые изменения сердечной деятельности, которые можно рассматривать как дистрофические. Эти изменения наблюдаются как при общем воздействии, так и при местном на область головы. Мышечная нагрузка в сочетании со слабым полем СВЧ ведет к более стойким изменениям.

На основании электрокардиографических данных можно сделать вывод, что под влиянием поля СВЧ изменяются биохимические процессы в тканях сердца, выраженность которых зависит от интенсивности воздействия микроволнами.

Определение электролитического состава периферической крови животных методом электрофореза после воздействия интенсивным полем СВЧ (ППМ 0,1-0,2 вт/см2) свидетельствует о фазных изменениях в содержании калия и натрия. Вначале коэффициент K/Na в плазме повышается, а потом снижается. При сопоставлении с электрокардиографическими данными видно, что после воздействия при высоком содержании калия в крови во всех отведениях появляются заостренные высокие зубцы Т, а при пониженном его содержании низкие уплощенные. По изменению соотношения калия и натрия в крови можно считать, что под влиянием микроволн происходит изменение проницаемости клеточных мембран к внутри- и внеклеточным катионам.

Большой интерес для механизма действия поля СВЧ на организм представляют биохимические исследования. Изучение окислительно-восстановительных процессов в тканях (печени, почках, сердечной мышце) путем определения в них активности ферментов (цитохромоксидазы, дегидразы и аденозинтрифосфатазы) выявляет действие на организм поля СВЧ. Применение интенсивного поля СВЧ (ППМ 0,1-0,3 вт/см2) приводит к резкому снижению окислительно-восстановительных процессов в тканях кролика; при этом проявляется тепловое действие поля СВЧ. Слабое поле СВЧ (ППМ 0,005-0,01 вт/см2) вызывает заметное повышение окислительно-восстановительных процессов в тканях. Многократное воздействие на кроликов поля СВЧ приводит к меньшим сдвигам окислительно-восстановительных процессов по сравнению с однократным. Это можно объяснить тем, что повторное воздействие стимулирует компенсаторно-приспособительные механизмы, обусловливает меньшие сдвиги окислительно-восстановительных процессов в тканях животных. Влияние компенсаторных механизмов было выражено больше в центральной нервной системе, чем в сердце.

Исследование белкового обмена животных как при местном, так и при общем воздействии поля СВЧ выявило некоторые особенности. Воздействие на область сердца ежедневно в течение 10 дней (ППМ 0,02 вт/см2 при площади излучателя 10 см2) не вызывало каких-либо существенных изменений белкового обмена сердечной мышцы, при более же интенсивном воздействии (ППМ 0,1 вт/см2) наблюдали увеличение содержания белков, обладающих фосфорилазной активностью при одновременном уменьшении фракции миогена.

В мышце сердца животных отмечены значительные изменения содержания отдельных белковых фракций, которые зависели от интенсивности воздействия.

Реакцией преципитации в агаре по Ухтерлони исследовали антигенный состав сыворотки крови животных, подвергнутых общему воздействию микроволн в виде курса из 20 процедур по 10 минут ежедневно (ППМ 0,006 и 0,04 вт/см2). Сыворотку крови исследовали на 24-25-й день после последнего воздействия. Реакция преципитации в агаре показала, что общее действие микроволн (ППМ 0,006 вт/см2) не приводит к изменению антигенного состава сыворотки крови животных. Антисыворотка к сыворотке подопытных животных одинаково реагировала с сывороткой как подопытных, так и здоровых животных.

При иммунологических исследованиях сыворотки крови животных, подвергнутых общему воздействию микроволн с ППМ 0,04 вт/см2, в реакции преципитации в агаре было обнаружено меньшее количество линий преципитации, что свидетельствовало об упрощении антигенного состава сыворотки крови и укреплении иммунитета . Сыворотки против сыворотки здоровых животных по-разному реагировали с сывороткой здоровых и подопытных животных; в то же время сыворотки против сыворотки подопытных реагировали с сывороткой здоровых и подопытных животных одинаково. Полученные данные, по-видимому, свидетельствуют о том, что в сыворотке здоровых животных имеются антигены, которых нет в сыворотке животных, подвергнутых воздействию микроволн.

Упрощение антигенного состава сыворотки крови при воздействии тепловых доз микроволн свидетельствует о глубоком сдвиге в обмене веществ организма. При действии нетепловых доз микроволн подобного явления не наблюдали.

Исследование высшей нервной деятельности собак методом условных рефлексов показывает, что воздействие полем СВЧ вызывает значительные изменения, которые зависят от плотности потока мощности, продолжительности воздействия и типологических особенностей животного. Изменение функционального состояния коры больших полушарий головного мозга у собак наблюдали уже при однократном воздействии слабым полем СВЧ (ППМ 0,005-0,01 вт/см2). Поскольку такая мощность поля не вызывала повышения температуры тела, наблюдаемый эффект не был связан с перегреванием. Слабое поле СВЧ усиливало процесс возбуждения, а сильное, при котором наблюдали одышку, перегрев, вело к развитию торможения в центральной нервной системе.

Усиление как условных, так и безусловных рефлексов указывает, что поле СВЧ действует как на кору головного мозга, так и на подкорковые образования. При длительном воздействии слабого поля СВЧ наблюдаются фазные изменения высшей нервной деятельности: сначала усиление процесса возбуждения, а затем ослабление его до исходного уровня с усилением торможения.

Изучение злектроэнцефалографических показателей у животных при общем воздействии выявило зависимость между характером биоэлектрической активности головного мозга и интенсивностью воздействия поля СВЧ. Интенсивные и длительные воздействия вызывали изменения основных ритмов электрической активности, а также амплитуды. При воздействии на голову животного эти изменения выступали при слабых воздействиях поля СВЧ.

В настоящее время ученые пытаются лечить микроволновыми волнами злокачественные образования, что, возможно, наконец позволит создать уникальное средство лечение рака груди . Однако, пока все находится в стадии экспериментов над животными.

Свойства сверхвысокочастотных волн

В современной жизни сверхвысокочастотные волны используются весьма активно. Взгляните на ваш сотовый телефон – он работает в диапазоне сверхвысокочастотного излучения.

Все технологии, такие как Wi-Fi, беспроводной Wi-Max, 3G, 4G, LTE (Long Term Evolution), радиоинтерфейс малого радиуса действия Bluetooth , системы радиолокации и радионавигации используют сверхвысокочастотные (СВЧ) волны.

СВЧ нашли применение в промышленности и медицине. По-другому СВЧ волны ещё называют микроволнами. Работа бытовой микроволновой печи также основана на применении СВЧ излучения.

Микроволны – это те же самые радиоволны, но длина волны у таких волн составляет от десятков сантиметров до миллиметра. Микроволны занимают промежуточное место между ультракороткими волнами и излучением инфракрасного диапазона. Такое промежуточное положение оказывает влияние и на свойства микроволн. Микроволновое излучение обладает свойствами, как радиоволн, так и световых волн. Например, СВЧ излучению присущи качества видимого света и инфракрасного электромагнитного излучения.


Станция мобильной сети стандарта LTE

Микроволны, длина волны которых составляет сантиметры, при высоких уровнях излучения способны оказывать биологическое воздействие. Кроме этого сантиметровые волны хуже проходят через здания, чем дециметровые.

СВЧ излучение можно концентрировать в узконаправленный луч. Это свойство напрямую сказывается на конструкции приёмных и передающих антенн, работающих в диапазоне СВЧ. Никого не удивит вогнутая параболическая антенна спутникового телевидения, принимающая высокочастотный сигнал, словно вогнутое зеркало, собирающее световые лучи.

Микроволны подобно свету распространяются по прямой и перекрываются твёрдыми объектами, наподобие того, как свет не проходит сквозь непрозрачные тела. Так, если в квартире развернуть локальную Wi-Fi сеть, то в направлении, где радиоволна встретит на своём пути препятствия, вроде перегородок или перекрытий, сигнал сети будет меньше, чем в направлении более свободном от преград.

Излучение от базовых станций сотовой связи GSM довольно сильно ослабляют сосновые леса, так как размеры и длина иголок приблизительно равны половине длины волны, и иголки служат своеобразными приёмными антеннами, тем самым ослабляя электромагнитное поле. Также на ослабление сигнала станций влияют и густые тропические леса. С ростом частоты увеличивается затухание СВЧ–излучения при перекрытии его естественными препятствиями.


Аппаратуру сотовой связи можно обнаружить даже на столбах электроснабжения

Распространение микроволн в свободном пространстве, например, вдоль поверхности земли ограничено горизонтом, в противоположность длинным волнам, которые могут огибать земной шар за счёт отражения в слоях ионосферы.

Данное свойство СВЧ излучения используется в сотовой связи. Область обслуживания делиться на соты, в которых действует базовая станция, работающая на своей частоте. Соседняя базовая станция работает уже на другой частоте, чтобы рядом расположенные станции не создавали помех друг другу. Далее происходит так называемое повторное использование радиочастот .

Поскольку излучение станции перекрывается горизонтом, то на некотором удалении можно установить станцию, работающую на той же частоте. В результате мешать такие станции друг другу не будут. Получается, что экономиться полоса радиочастот, используемая сетью связи.


Антенны базовых станций GSM

Радиочастотный спектр является природным, ограниченным ресурсом, наподобие нефти или газа. Распределением частот в России занимается государственная комиссия по радиочастотам – ГКРЧ. Чтобы получить разрешение на развёртывание сетей беспроводного доступа порой ведутся настоящие "корпоративные войны" между операторами мобильных сетей связи.

Почему микроволновое излучение используется в системах радиосвязи, если оно не обладает такой дальностью распространения, как, например, длинные волны?

Причина в том, что чем выше частота излучения, тем больше информации можно передавать с его помощью. К примеру, многие знают, что оптоволоконный кабель обладает чрезвычайно высокой скоростью передачи информации исчисляемой терабитами в секунду.

Все высокоскоростные телекоммуникационные магистрали используют оптоволокно. В качестве переносчика информации здесь служит свет, частота электромагнитной волны которого несоизмеримо выше, чем у микроволн. Микроволны в свою очередь имеют свойства радиоволн и беспрепятственно распространяются в пространстве. Световой и лазерные лучи сильно рассеиваются в атмосфере и поэтому не могут быть использованы в мобильных системах связи.

У многих дома на кухне есть СВЧ–печь (микроволновка), с помощью которой разогревают пищу. Работа данного устройства основана на поляризационных эффектах микроволнового излучения. Следует отметить, что разогрев объектов, с помощью СВЧ–волн происходит в большей степени изнутри, в отличие от инфракрасного излучения, которое разогревает объект снаружи внутрь. Поэтому нужно понимать, что разогрев в обычной и СВЧ–печи происходит по-разному. Также микроволновое излучение, например, на частоте 2,45 ГГц способно проникать внутрь тела на несколько сантиметров, а производимый нагрев ощущается при плотности мощности в 20 50 мВт/см 2 при действии излучения в течение нескольких секунд. Понятно, что мощное СВЧ–излучение может вызывать внутренние ожоги, так как разогрев происходит изнутри.

На частоте работы микроволновки, равной 2,45 Гигагерцам, обычная вода способна максимально поглощать энергию сверхвысокочастотных волн и преобразовывать её в тепло, что, собственно, и происходит в микроволновке.

В то время пока идут неутихающие споры о вреде СВЧ-излучения военные уже имеют возможность проверить на деле так называемую "лучевую пушку". Так в Соединённых штатах разработана установка, которая "стреляет" узконаправленным СВЧ-лучём.

Установка на вид представляет собой что-то вроде параболической антенны, только невогнутой, а плоской. Диаметр антенны довольно большой – это и понятно, ведь необходимо сконцентрировать СВЧ-излучение в узконаправленный луч на большое расстояние. СВЧ-пушка работает на частоте 95 Гигагерц, а её эффективная дальность "стрельбы" составляет около 1 километра. По заявлениям создателей – это не предел. Вся установка базируется на армейском хаммере.

По словам разработчиков, данное устройство не представляет смертельной угрозы и будет применяться для разгона демонстраций. Мощность излучения такова, что при попадании человека в фокус луча, у него возникает сильное жжение кожи. По словам тех, кто попадал под такой луч, кожа будто бы разогревается очень горячим воздухом. При этом возникает естественное желание укрыться, сбежать от такого эффекта.

Действие данного устройства основано на том, что микроволновое излучение частотой 95 ГГц проникает на пол миллиметра в слой кожи и вызывает локальный нагрев за доли секунды. Этого достаточно, чтобы человек, оказавшийся под прицелом, ощутил боль и жжение поверхности кожи. Аналогичный принцип используется и для разогрева пищи в микроволновой печи, только в микроволновке СВЧ-излучение поглощается разогреваемой пищей и практически не выходит за пределы камеры.

На данный момент биологическое воздействие микроволнового излучения до конца не изучено. Поэтому, чтобы не говорили создатели о том, что СВЧ-пушка не вредна для здоровья, она может причинить вред органам и тканям человеческого тела.

Стоит отметить, что СВЧ-излучение наиболее вредно для органов с медленной циркуляцией тепла – это ткани головного мозга и глаз. Ткани мозга не имеют болевых рецепторов, и почувствовать явное воздействие излучения не удастся. Также с трудом вериться, что на разработку "отпугивателя демонстрантов" будут отпускаться немалые деньги – 120 миллионов долларов. Естественно, это военная разработка. Кроме этого нет особых преград, чтобы увеличить мощность высокочастотного излучения пушки до такого уровня, когда его уже можно использовать в качестве поражающего оружия. Также при желании её можно сделать и более компактной.

В планах военных создать летающую версию СВЧ-пушки. Наверняка её установят на какой-нибудь беспилотник и будут управлять им удалённо.

Вред микроволнового излучения

В документах на любой электронный прибор, который способен излучать СВЧ-волны упоминается так называемый SAR. SAR – это удельный коэффициент поглощения электромагнитной энергии. Простым языком – это мощность излучения, которая поглощается живыми тканями тела. Измеряется SAR в ваттах на килограмм. Так вот, для США определён допустимый уровень в 1,6 Вт/кг. Для Европы он чуть больше. Для головы 2 Вт/кг, для остальных частей тела и вовсе 4 Вт/кг. В России действуют более строгие ограничения, а допустимое излучение меряется уже в Вт/см 2 . Норма составляет 10 мкВт/см 2 .

Несмотря на то, что СВЧ излучение принято считать неионизирующим, стоит отметить, что оно в любом случае оказывает влияние на любые живые организмы. Например, в книге "Мозг в электромагнитных полях" (Ю. А. Холодов) приводятся результаты множества экспериментов, а также тернистая история внедрения норм на облучение электромагнитными полями. Результаты весьма любопытны. Микроволновое излучение влияет на многие процессы, протекающие в живых организмах. Если интересно, почитайте.

Из всего этого следует несколько простых правил. Как можно меньше болтать по мобильному телефону. Держать его подальше от головы и важных частей тела. Не спать со смартфоном в обнимку. По возможности использовать гарнитуру. Держаться подальше от базовых станций сотовой связи (речь идёт о жилых и рабочих помещениях). Не секрет, что антенны подвижной связи ставят на крышах жилых домов.

Также стоит "швырнуть камень в огород" мобильного интернета при использовании смартфона или планшета. Если вы "сидите в интернете", то устройство постоянно передаёт данные базовой станции. Даже если излучение по мощности небольшое (всё зависит от качества связи, помех и удалённости базовой станции), то при длительном использовании негативный эффект обеспечен. Нет, вы не облысеете и не начнёте светиться. В мозгу нет болевых рецепторов. Поэтому он будет устранять "проблемы" по "мере сил и возможностей". Просто будет сложнее сконцентрироваться, усилится усталость и пр. Это как пить яд малыми дозами.

Глава V. ЗАБОЛЕВАНИЯ, СВЯЗАННЫЕ С ВОЗДЕЙСТВИЕМ НЕКОТОРЫХ ФАКТОРОВ ВОЕННОГО ТРУДА

Широкое оснащение армии и военно-морского флота различной техникой в значительной мере изменяет условия труда личного состава Вооруженных Сил. Эти условия не исключают возможности соприкосновения отдельных специалистов с вредными факторами, действующими на них в процессе обслуживания и эксплуатации некоторых видов современного вооружения и технических средств. В ряде случаев, особенно при нарушениях правил техники безопасности и аварийных ситуациях, последнее может приводить к возникновению острых и хронических поражений, которые целесообразно объединять в отдельную нозологическую группу военно-профессиональных заболеваний.

Возникновение военно-профессиональных заболеваний могут вызывать воздействия следующих факторов: различных ядовитых технических жидкостей, окиси углерода, радиационных излучений малой интенсивности, сверхвысокочастотных электромагнитных волн и т. д.

Следует подчеркнуть, что военно-профессиональные заболевания, рассматриваемые в данном разделе прежде всего в плане патологии мирного времени, в условиях войны могут приобретать массовый характер, что сближает их в этом случае с боевыми поражениями.

Таковыми, например, могут стать поражения техническими жидкостями при разрушениях и взрывах хранилищ, отравления окисью углерода при обширных пожарах и т. п.

Влияние на организм сверхвысокочастотного электромагнитного (СВЧ-ЭМ) поля

Широкое применение генераторов СВЧ-ЭМ поля в военном деле и в народном хозяйстве, наряду с увеличением мощности излучателей, естественно, приводит к тому, что многочисленные группы специалистов, участвующие в заводском изготовлении, испытании, а также в эксплуатации различных радиолокационных станций (РЛС) и радиотехнических систем (РТС), могут подвергаться воздействию радиоволн сверхвысоких частот ("микроволн"), биологическая активность которых была впервые отмечена еще в тридцатых годах.

Конструктивные особенности выпускаемых РЛС и установленные правила эксплуатации практически исключают неблагоприятное влияние СВЧ-излучений на здоровье личного состава. Однако при аварийных ситуациях и при нарушении техники безопасности могут иметь место воздействия СВЧ-ЭМ поля, значительно превышающие предельно допустимые уровни облучения.

Этиология и патогенез

СВЧ-поле (микроволны) относится к той части спектра электромагнитных излучений, частота колебаний которой варьирует от 300 до 300 000 мгГц, а соответственно длина волны - от 1 м до 1 мм. В связи с этим различаются миллиметровые, сантиметровые, дециметровые волны. Микроволны отличаются свойством проникать в глубину тканей и поглощаться ими, вступая в сложное взаимодействие с биосубстратом. Обычно поглощается 40-50% падающей энергии (остальная часть отражается), причем микроволны проникают на глубину, равную примерно 1/10 длины волны. Из этого следует, что миллиметровые волны поглощаются в коже, тогда как дециметровые проникают в глубину на 10-15 см. Уже давно установлен факт избирательного поглощения СВЧ-излучений, детерминированный биофизическими (диэлектрическими) свойствами тканей.

Биофизический механизм поглощения СВЧ-поля не вполне выяснен. Наиболее вероятным представляется, что в основе поглощения микроволн лежит возникновение колебаний ионов и диполей воды. Допускается также резонансное поглощение энергии белковыми молекулами клетки. Сказанное о колебаниях диполей воды делает понятным, почему в тканях, богатых водой, СВЧ-энергия поглощается наиболее сильно. При достаточно высоких интенсивностях облучения поглощение микроволн сопровождается термическим эффектом (пороговый характер действия). При прочих равных условиях термический эффект более выражен в относительно бедно васкуляризированных органах и тканях, так как в таких областях система терморегуляции является недостаточно совершенной. Установлена следующая шкала чувствительности к СВЧ-полю: хрусталик, стекловидное тело, печень, кишечник, семенники.

Экспериментально также доказана высокая чувствительность нервной системы к воздействию микроволн. Так, при одинаковом облучении головы, туловища и конечностей у животных наиболее выраженные сдвиги регистрируются в случае облучения головы.

Для характеристики интенсивности облучения предложено понятие плотности потока мощности - ППМ. Оно представляет собою величину энергии, падающую в течение секунды на перпендикулярно расположенную плоскость. ППМ выражается в вт/см 2 ; в медико-гигиенической практике обычно пользуются меньшими коэффициентами: мвт/см 2 и мквт/см 2 . Регистрируемый термический эффект развивается при облучении в дозах, превышающих 10-15 мвт/см 2 .

Наряду с термическим механизмом действия СВЧ-поля работами преимущественно советских авторов (А. В. Триумфов, И. Р. Петров, 3. В. Гордон, Н. В. Тягин и др.) доказано нетермическое или специфическое действие этих излучений. При достаточно высоких уровнях облучения (свыше 15 мвт/см 2) термические эффекты, по-видимому, как бы перекрывают специфическое действие микроволн.

В общем патогенезе поражений СВЧ-полем схематически можно выделить как бы три этапа:

  1. функциональные (функционально-морфологические) изменения в клетках, прежде всего в клетках ЦНС, развивающиеся в результате непосредственного воздействия СВЧ-поля;
  2. изменение рефлекторно-гуморальной регуляции функции внутренних органов и обмена веществ;
  3. преимущественно опосредованное, вторичное, изменение функции (возможны и органические изменения) внутренних органов.

В структуре развивающихся изменений наряду с собственно патологическими процессами ("поломы") выявляются и компенсаторные реакции. При многократных повторных воздействиях следует считаться также с процессами кумуляции биологического эффекта, а также с адаптацией организма к действию СВЧ-поля (А. Г. Суббота). В эксперименте и клинических наблюдениях выявлены определенные иммунологические сдвиги, возникшие вследствие воздействия микроволн (Б. А. Чухловин и др.).

Клиника и диагностика

Клиника расстройств, возникающих у человека под воздействием СВЧ-ЭМ-поля, систематически изучалась только на протяжении последних 10-15 лет, причем советские исследователи (А. В. Триумфов, А. Г. Панов, Н. В. Тягин, В. М. Малышев и Ф. А. Колесник, 3. В. Гордон, Э. А. Дрогичина, А. А. Орлова, Н. В. Успенская, М. Н. Садчикова и мн. др.) внесли в эту работу вклад решающего значения. До 60-х годов представления о возможной симптоматологии и течении поражений от СВЧ-поля основывались почти исключительно на результатах изучения соответствующих экспериментальных моделей на животных.

К настоящему времени у нас в стране накопился значительный опыт диспансерного наблюдения за специалистами РЛС и РТС, работниками радиотехнических предприятий, сочетавшийся с углубленным обследованием определенных групп в условиях специализированных отделений и клинических стационаров; это обстоятельство позволяет конкретизировать, расширить и уточнить наши представления по интересующим вопросам.

Обращаясь к клинической характеристике расстройств, развивающихся в результате воздействия СВЧ-излучений, следует прежде всего разделить их на две формы: острые и хронические (поражения, расстройства, реакции); практическое значение их далеко не одинаково.

Острые формы поражения (реакции) встречаются практически очень редко; они могут возникать только при крайне грубом нарушении техники безопасности или аварийных ситуациях, если это имеет следствием облучение микроволнами в диапазоне заведомо термической интенсивности. В зависимости от конкретных параметров воздействия (ППМ, время, длина волны и др.) и реактивности организма могут возникать различные варианты острых реакций (поражений). В американской литературе описан случай смерти радиомеханика в результате острого интенсивного облучения от радара, но ряд авторов не считают доказанной связь заболевания и смерти с имевшим место воздействием СВЧ-излучений. В. М. Малышев и Ф. А. Колесник наблюдали развитие тяжелого многодневного приступа пароксизмальной тахикардии, наступившего у молодого, ранее совершенно здорового радиомеханика вскоре после облучения (авария) сантиметровыми волнами термической интенсивности. Эти приступы (по-видимому, диэнцефальные) часто повторяясь, в дальнейшем привели к тяжелой дистрофии миокарда и выраженной недостаточности кровообращения.

Острое интенсивное облучение может в отдельных редких случаях вызывать быстрое развитие локальных поражений. В частности, в мировой литературе описано около десяти случаев острого развития катаракты (в том числе и двусторонней) после локального облучения глаз при ППМ от многих сотен мвт/см 2 до нескольких вт/см 2 .

Редко встречаются острые реакции легкой степени. Судя по имеющимся немногочисленным описаниям, их симптоматология сводится к возникновению слабости, головных болей, легкому головокружению и тошноте. Этому способствуют нерезко выраженные объективные симптомы в виде изменения ритма сердечной деятельности (чаще тахикардия, иногда брадикардия), нарушения регуляции артериального давления (первоначально возникающая гипертония сменяется чаще гипотонией), местных ангиоспазмов и др. Эти симптомы обычно через 2-3 суток постепенно проходят без специального лечения, но у некоторых больных проявления астении и вегетативно-сосудистой дистонии могут держаться дольше, что, кроме интенсивности и длительности воздействия, в значительной мере зависит от реактивности организма.

В отдельных наблюдениях на добровольцах (и в самонаблюдениях) при ППМ субтермической интенсивности (около 1000 мквт/см 2) было отмечено небольшое изменение биоэлектрической активности коры головного мозга, снижение максимального и минимального давления и изменение тонуса крупных артерий.

В практической деятельности врача гораздо большее значение имеет выявление ранних форм тех расстройств (поражений), которые при незнании или нарушении техники безопасности могут возникать в результате длительного многократного облучения в дозах, превышающих предельно допустимые уровни.

Симптоматология и течение такого рода хронических форм ("синдрома хронического воздействия СВЧ-поля", "хронических поражений") в значительной мере варьируют в зависимости от различных параметров воздействия, сопутствующих неблагоприятных влияний, индивидуальной реактивности организма и других факторов.

Однако во всех случаях клиническая картина складывается из симптомов нарушения функции ЦНС, сочетающихся в разной степени с вегетативно-сосудистыми и висцеральными расстройствами; особенно характерен синдром астений (неврастений).

Кроме расстройств общего характера (слабость, повышенная утомляемость, беспокойный сон и т. п.), у больных часто возникают головные боли, головокружение, боли в области сердца, сердцебиение, потливость, ухудшение аппетита; реже предъявляются жалобы на нерегулярный стул, различные неприятные ощущения в животе, снижение сексуальной потенции, расстройство менструального цикла.

Головные боли обычно бывают неинтенсивными, но длительными; локализуются они в лобной или затылочной области, возникают чаще в утренние часы и к концу рабочего дня. Непродолжительный отдых в горизонтальном положении (по приходе с работы) у многих приводит к исчезновению головных болей. Часто также больные жалуются на головокружения, возникающие обычно при быстром изменении положения тела или при длительном неподвижном стоянии. Так называемые "сердечные боли" носят в большинстве случаев характер кардиалгии. Боли ощущаются преимущественно в области верхушки сердца, бывают длительными и ноющими; иногда больной ощущает кратковременное (почти мгновенное) колотье в околосердечной области. Типичные стенокардические боли приходится наблюдать редко. Опуская характеристику других, менее часто возникающих жалоб, представляется необходимым подчеркнуть, что для "внутренней картины болезни", обусловленной длительным воздействием СВЧ-ЭМ-поля, в высокой степени характерно сочетание жалоб, отражающих изменение функции нервной системы, с жалобами, относящимися к нарушению функции системы кровообращения. Что касается неврологических нарушений, то они обычно укладываются в картину астенического (неврастенического) синдрома.

Очевидный практический интерес имеет вопрос о времени появления перечисленных жалоб, считая от начала работы с генераторами СВЧ-ЭМ-поля. Имеющиеся литературные данные и практический опыт свидетельствуют о том, что у разных лиц первые жалобы возникают через весьма различные промежутки времени от начала воздействия - от нескольких месяцев до нескольких лет. Эти различия зависят не только от индивидуальной реактивности организма, но, по-видимому, в решающей степени - и от параметров воздействия, прежде всего от величины плотности потока мощности (ППМ) электромагнитного поля.

Объективные признаки патологических изменений, обнаруживаемые обычными физическими методами исследования, бывают выражены нерезко и не носят специфического характера. Наиболее часто выявляются симптомы, указывающие на вегетативнососудистые нарушения: регионарный гипергидроз, акроцианоз, похолодание (на ощупь) кистей и стоп, "игра вазомоторов" лица. Отметим также, что у больных закономерно наблюдается психоэмоциональная лабильность, реже - наклонность к депрессивным реакциям и заторможенность, тремор век и пальцев вытянутых рук.

Весьма характерна лабильность пульса и артериального давления с наклонностью к брадикардии и гипотонии. При обследовании соответствующих профессиональных контингентов, предъявляющих жалобы па состояние здоровья, брадикардия и артериальная гипотония выявляются в 25-40%. Нередко обнаруживается небольшое увеличение сердца влево, еще более часто отмечается приглушение первого тона на верхушке и нежный систолический шум (у 1/3-1/2 обследованных). Небольшое увеличение печени устанавливается в 10-15%. Другие объективные симптомы, описанные некоторыми авторами (сухость кожи, выпадение волос, ломкость ногтей, геморрагические проявления, болезненность при пальпации живота), наблюдаются редко и не могут быть пока с убежденностью отнесены к проявлениям непосредственного влияния СВЧ-ЭМ-поля. Довольно часто приходится наблюдать то или иное нарушение общей и местной терморегуляции. В отличие от ряда авторов мы наблюдали гипотермию несколько реже, чем субфебрилитет.

Рентгенологические исследования органов грудной клетки позволяют выявить нередко умеренную гипертрофию левого желудочка сердца. При записи ЭКГ отклонение от нормы, если не считать брадикардии и респираторной аритмии, констатируется нечасто. В единичных случаях наблюдаются экстрасистолическая аритмия, умеренное замедление внутрипредсердной и внутрижелудочковой проводимости, признаки коронарной недостаточности. Несколько чаще выявляются признаки диффузных мышечных изменений, умеренно выраженных (снижение вольтажа зубцов начальной части желудочкового комплекса и их деформация, уплощение зубца T).

Под влиянием длительного воздействия СВЧ-ЭМ-поля содержание гемоглобина и эритроцитов существенно не изменяется. Количество ретикулоцитов остается в большинстве случаев в пределах нормы, хотя в некоторых сообщениях указывается на возможность развития как умеренно выраженного ретикулоцитоза, так и ретикулоцитопении. Достаточно характерным является неустойчивость содержания лейкоцитов в периферической крови с разнонаправленной тенденцией у разных лиц; у одних наблюдается тенденция к лейкоцитозу, значительно чаще встречается лейкопения.

Лейкоцитарная формула характеризуется тенденцией к относительному лимфоцитозу и моноцитозу, а также изменчивостью абсолютного и процентного содержания лимфоцитов, моноцитов, нейтрофилов. Качественные изменения нейтрофилов регистрируются редко. Число тромбоцитов у большинства больных остается на нижней границе нормы.

Исследование функции желудочно-кишечного тракта позволяет нередко выявить наклонность к угнетению желудочной секреции и нерезко выраженные нарушения его моторной деятельности (гипотония желудка, вялая перистальтика, дуоденостаз); наблюдаются также явления дискинезии тонкого и толстого кишечника. Комплексное изучение функции печени дает возможность у части больных установить нерезкие нарушения билирубиновыделительной (повышение уровня билирубина в крови и выделения уробилина с мочой) и дезинтоксикационный (по пробе Квика) ее функции.

В последние годы ряд авторов проводили изучение различных показателей обмена веществ у лиц, подвергающихся длительному воздействию СВЧ-ЭМ-поля. В результате этих исследований было установлено, что содержание холестерина и лецитина в сыворотке крови не претерпевает существенных изменений. Обычно оказывается нормальным общее количество белков крови. Что касается показателей углеводного обмена, то может быть отмечена наклонность к снижению уровня сахара крови натощак. Среди различных разновидностей встречающихся сахарных кривых наиболее характерны так называемые низкие или плоские.

Изучение водно-минерального обмена у длительно контактирующих с генераторами СВЧ-ЭМ-поля не позволило обнаружить выраженных отклонений от нормы. Вместе с тем имеются некоторые данные, могущие косвенно указывать на нерезкое изменение функции надпочечников (лабильность и некоторое снижение экскреции 17-кетостероидов).

Заключая описание симптоматологии, следует констатировать, что у обследуемых закономерно выявляются не только признаки, указывающие на изменения функции ЦНС (астенический, неврастенический синдромы), но и симптомы функционального нарушения ряда внутренних органов, среди которых на первый план выступает изменение функции системы кровообращения.

Распознавание расстройств, связанных с воздействием микроволн, является нередко трудной и ответственной задачей, предусматривающей не только обычное тщательное клиническое изучение обследуемого, но и обязательное изучение его профессионального анамнеза, а также характеристики гигиенических условий работы, включая данные дозиметрии. Следовательно, диагноз должен основываться не только на клинических, но и на гигиено-дозиметрических сведениях.

При обследовании больного важно первоначально по общим правилам исключить другие заболевания (или воздействие других этиологических факторов), проявляющиеся на определенных стадиях сходной клинической картиной. Диагностика, естественно, осложняется в тех практически нередких случаях, когда обследуемый действительно одновременно подвергается влиянию нескольких неблагоприятных (специфических или неспецифических) факторов. В этих случаях нужно по возможности точнее оценить меру того или иного воздействия.

По степени выраженности и стойкости расстройств различают начальные легко обратимые формы (I степень) и выраженные стойкие формы (II степень). Предлагается также выделять и "хроническое поражение" ("синдром хронического воздействия") III степени, когда наряду с выраженными изменениями функции нервной, сердечно-сосудистой и других систем выявляются органические и дистрофические изменения в органах. Однако такие тяжелые формы в настоящее время практически не встречаются.

Лечение и профилактика

Важнейшим условием успешного лечения является прекращение контакта с СВЧ-полем. Терапия должна начинаться как можно раньше, быть индивидуализированной и комплексной. Этим больным должна обеспечиваться достаточно калорийная, полноценная, хорошо витаминизированная пища. В общем комплексном лечении важное значение придается различным методам психотерапии. Среди пациентов нередко встречаются лица, напуганные своим недугом и преувеличивающие опасность неблагоприятного влияния профессионального фактора. В таких случаях беседа или серия бесед, в процессе которых неторопливо разъясняется характер заболевания, рассеиваются необоснованные тревоги и внушается уверенность в благоприятном исходе, имеют первостепенное значение.

Из лекарственных средств, применявшихся для терапии рассматриваемых нарушений и прежде всего гипотонических состояний, могут быть названы растительные стимуляторы нервной системы: спиртовая настойка корня женьшеня, настойка левзеи или аралии, китайский лимонник, стрихнин, секуринин, кофеин. В последние годы мы наблюдали благоприятный эффект от назначения настойки заманихи, а также элеутерококка.

Отдельными авторами описаны также положительные результаты от назначения при гипотонических состояниях различного происхождения синтетических препаратов адреналинового ряда (веритолпрометин, эффортил), эфедрина, атропина, теобромина, эуфиллина, но надо сказать, что эти препараты не получили распространения. Из гормональных препаратов можно рекомендовать кортин и ДОКСА. Из витаминных препаратов показаны В 1 В 12 и аскорбиновая кислота. По отношению к назначению бромидов скорее имеются основания высказаться сдержанно.

При лечении больных рассматриваемой группы рекомендуется применять один из растительных стимуляторов нервной системы, который после трех-четырех-недельного применения в случае отсутствия отчетливого эффекта следует заменять другим. Заметных различий в степени эффективности указанных препаратов не наблюдается. При выраженной вялости, заторможенности одновременно с одним из указанных средств нередко назначаются на 10-15 дней препараты кофеина. Больным с эмоциональной возбудимостью назначается стрихнин вместе с валерианой. В последнее время еще лучшие результаты наблюдались от применения малых транквилизаторов (триоксазин, либриум, мепротан и другие).

В общем комплексном лечении у большинства больных использовались методы физкультуры и физические методы лечения (ионофорез с кальцием, общее ультрафиолетовое облучение, прохладные души и др.).

Обследование и лечение лиц разбираемой профессиональной принадлежности должно проводиться в специализированных стационарах в связи с новизной и недостаточной изученностью этой формы патологии. В дальнейшем больные должны находиться на длительном диспансерном наблюдении; при этом имеются все основания в общем плане лечебно-профилактических мероприятий отводить существенное место санаторно-курортному лечению.

В нашей стране разработана научно обоснованная система профилактики неблагоприятного воздействия СВЧ-поля на организм работающих. Она предусматривает проведение санитарного наблюдения за конструированием РЛС и РТС, проведение гигиенического контроля за условиями работы. Имеется ряд инженерно-технических мероприятий, обеспечивающих защиту от воздействия СВЧ-излучений (правильный выбор позиции РЛС на возвышенностях, экранирование при необходимости жилых помещений и др.). Создаются специальные образцы защитной одежды (металлизированная ткань, отражающая микроволны) и защитных очков (металлизированное стекло) для условий работы, связанных с относительно интенсивным облучением (около 1000 мквт/см 2).

У нас действуют строгие нормы ПДУ, надежно обеспечивающие безопасность работы. Так, при облучении микроволнами в течение 8 ч ППМ не должна превышать 10 мквт/см 2 , при работе в течение 2 ч/суток - ППМ соответственно не более 100 мквт/см 2 . При ППМ до 1000 мквт/см 2 продолжительность работы не должна превышать 15-20 мин. Если РЛС работает в режиме кругового обзора или сканирования (секторальный обзор), то ПДУ увеличивается в 10 раз (коэффициент 10).

Медико-гигиеническая профилактика не ограничивается контролем за соблюдением установленных гигиенических условий работы (включая дозиметрический контроль). Она включает проведение медицинского отбора специалистов для работы с генераторами СВЧ поля, а также постоянное диспансерное наблюдение за работающими. Установлено, что занятия физкультурой, повышение общего развития, полноценное питание с достаточным введением витаминов групп В и С способствуют повышению резистентности организма к воздействию микроволн.

В. КОЛЯДА. Материал подготовлен редакцией "Покупаем от А до Я" по просьбе журнала "Наука и жизнь".

Наука и жизнь // Иллюстрации

Рис. 1. Шкала электромагнитного излучения.

Рис. 2. Дипольные молекулы: а - в отсутствие электрического поля; б - в постоянном электрическом поле; в - в переменном электрическом поле.

Рис. 3. Проникновение микроволн в глубь куска мяса.

Рис. 4. Маркировка посуды.

Рис. 5. Ослабление энергии СВЧ-излучения в атмосфере: на каждой следующей линии по мере удаления от печи мощность излучения в 10 раз меньше, чем на предыдущей.

Рис. 6. Основные элементы микроволновой печи.

Рис. 7. Дверца микроволновой печи.

Рис. 8. Печь с диссектором (а) и поворотным столом (б).

Во второй половине ХХ века в наш обиход вошли печи, нагрев пищи в которых производится невидимыми лучами - микроволнами.

Подобно многим другим открытиям, существенно повлиявшим на повседневную жизнь людей, открытие теплового воздействия микроволн произошло случайно. В 1942 году американский физик Перси Спенсер работал в лаборатории компании "Райтеон" с устройством, излучавшим сверхвысокочастотные волны. Разные источники по-разному описывают события, случившиеся в тот день в лаборатории. По одной версии, Спенсер положил на устройство свой бутерброд, а сняв его через несколько минут, обнаружил, что бутерброд прогрелся до середины. По другой версии, разогрелся и растаял шоколад, который был у Спенсера в кармане, когда он работал возле своей установки, и, осененный счастливой догадкой, изобретатель кинулся в буфет за сырыми кукурузными зернами. Поднесенный к установке попкорн вскоре с треском начал лопаться…

Так или иначе эффект был обнаружен. В 1945 году Спенсер получил патент на использование микроволн для приготовления пищи, а в 1947-м на кухнях госпиталей и военных столовых, где требования к качеству пищи были не столь высоки, появились первые приборы для приготовления пищи с помощью микроволн. Эти изделия фирмы "Райтеон" высотой в человеческий рост весили 340 кг и стоили 3000 долларов за штуку.

Понадобилось полтора десятилетия, чтобы "довести до ума" печь, в которой пища готовится с помощью невидимых волн. В 1962 году японская фирма "Sharp" выпустила в продажу первую серийную микроволновую печь, которая, впрочем, поначалу не вызвала потребительского ажиотажа. Этой же фирмой в 1966 году был разработан вращающийся стол, в 1979-м впервые применена микропроцессорная система управления печью, а в 1999-м разработана первая микроволновая печь с выходом в Интернет.

Сегодня десятки фирм выпускают бытовые микроволновки. Только в США в 2000 году продали 12,6 млн микроволновых печей, не считая комбинированных духовок со встроенным источником микроволн.

Опыт применения миллионов микроволновых печей во многих странах в течение последних десятилетий доказал неоспоримые удобства этого способа приготовления пищи - быстроту, экономичность, простоту пользования. Сам механизм приготовления пищи с помощью микроволн, с которым мы познакомим вас ниже, предопределяет сохранение молекулярной структуры, а значит, и вкусовых качеств продуктов.

Что такое микроволны

Микроволновое, или сверхвысокочастотное (СВЧ), излучение - это электромагнитные волны длиной от одного миллиметра до одного метра, которые используются не только в микроволновых печах, но и в радиолокации, радионавигации, системах спутникового телевидения, сотовой телефонии и т.д. Микроволны существуют в природе, их испускает Солнце.

Место микроволн на шкале электромагнитного излучения показано на рис. 1.

В бытовых микроволновых печах используются микроволны, частота f которых составляет 2450 МГц. Такая частота установлена для микроволновых печей специальными международными соглашениями, чтобы не создавать помех работе радаров и иных устройств, использующих микроволны.

Зная, что электромагнитные волны распространяются со скоростью света с , равной 300 000 км/с, нетрудно подсчитать, чему равна длина волны L микроволнового излучения данной частоты:

L = c /f = 12,25 см.

Чтобы понять принцип работы микроволновой печи, нужно вспомнить еще один факт из школьного курса физики: волна представляет собой сочетание переменных полей - электрического и магнитного. Продукты, употребляемые нами в пищу, магнитными свойствами не обладают, поэтому о магнитном поле мы можем забыть. А вот изменения электрического поля, которые несет с собой волна, для нас очень кстати...

Как микроволны нагревают пищу?

В состав продуктов питания входят многие вещества: минеральные соли, жиры, сахар, вода. Чтобы нагреть пищу с помощью микроволн, необходимо присутствие в ней дипольных молекул, то есть таких, на одном конце которых имеется положительный электрический заряд, а на другом - отрицательный. К счастью, подобных молекул в пище предостаточно - это молекулы и жиров и сахаров, но главное, что диполем является молекула воды - самого распространенного в природе вещества.

Каждый кусочек овощей, мяса, рыбы, фруктов содержит миллионы дипольных молекул.

В отсутствие электрического поля молекулы расположены хаотически (рис. 2,а).

В электрическом поле они выстраиваются строго по направлению силовых линий поля, "плюсом" в одну сторону, "минусом" в другую. Стоит полю поменять направление на противоположное, как молекулы тут же переворачиваются на 180 о (рис. 2,б).

А теперь вспомним, что частота микроволн 2450 Мгц. Один герц - это одно колебание в секунду, мегагерц - один миллион колебаний в секунду. За один период волны поле меняет свое направление дважды: был "плюс", стал "минус", и снова вернулся исходный "плюс". Значит, поле, в котором находятся наши молекулы, меняет полярность 4 900 000 000 раз в секунду! Под действием микроволнового излучения молекулы кувыркаются с бешеной частотой и в буквальном смысле трутся одна о другую при переворотах (рис. 2,в). Выделяющееся при этом тепло и служит причиной разогрева пищи.

Продукты нагреваются под действием микроволн примерно так же, как нагреваются наши ладони, когда мы быстро трем их друг о друга. Сходство состоит и еще в одном: когда мы трем кожу одной руки о кожу другой, тепло проникает в глубь мышечной ткани. Так и микроволны: они работают только в относительно небольшом поверхностном слое пищи, не проникая внутрь глубже, чем на 1-3 см (рис. 3). Поэтому нагрев продуктов происходит за счет двух физических механизмов - прогрева микроволнами поверхностного слоя и последующего проникновения тепла в глубину продукта за счет теплопроводности.

Отсюда сразу следует рекомендация: если нужно приготовить в микроволновке, например, большой кусок мяса, лучше не включать печь на полную мощность, а работать на средней мощности, но зато увеличить время пребывания куска в печи. Тогда тепло из наружного слоя успеет проникнуть в глубь мяса и хорошо пропечет внутреннюю часть куска, а снаружи кусок не подгорит.

Из тех же соображений жидкие продукты, например супы, лучше периодически помешивать, вынимая время от времени кастрюльку из печи. Этим вы поможете проникновению тепла в глубь емкости с супом.

Посуда для микроволновки

Разные материалы по-разному ведут себя по отношению к микроволнам, и для СВЧ-печи годится не всякая посуда. Металл отражает микроволновое излучение, поэтому внутренние стенки полости печи делают из металла, чтобы он отражал волны к пище. Соответственно, металлическая посуда для микроволновок не годится.

Исключением является низкая открытая металлическая посуда (например, алюминиевые лотки для продуктов). Такую посуду можно помещать в микроволновую печь, но, во-первых, только вниз, на самое дно, а не на второй по высоте уровень (некоторые микроволновки допускают "двухэтажное" размещение лотков); во-вторых, нужно, чтобы печь работала не на максимальной мощности (лучше увеличить время работы), а края лотка отстояли от стенок камеры не менее, чем на 2 см, чтобы не образовался электрический разряд.

Стекло, фарфор, сухие картон и бумага пропускают микроволны сквозь себя (влажный картон начнет разогреваться и не пропустит микроволны, пока не высохнет). Посуду из стекла можно применять в микроволновке, но только при условии, что она выдержит высокую температуру нагрева. Для СВЧ-печей выпускается посуда из специального стекла (например, Pyrex) с низким коэффициентом теплового расширения, стойкая к нагреву.

В последнее время многие производители снабжают посуду маркировкой, указывающей на допустимость применения в микроволновой печи (рис. 4). Прежде чем пользоваться посудой, обратите внимание на ее маркировку.

Учтите, что, например, пластиковые термостойкие контейнеры для пищи прекрасно пропускают микроволны, но и они могут не выдержать высокой температуры, если дополнительно к микроволнам включить еще и гриль.

Продукты питания поглощают микроволны. Так же ведут себя глина и пористая керамика, применять которые в микроволновках не рекомендуется. Посуда из пористых материалов задерживает влагу и нагревается сама вместо того, чтобы пропускать микроволны к продуктам. В результате продуктам достается меньше микроволновой энергии, а вы рискуете обжечься, вынимая посуду из печи.

Приведем три главных правила на тему: что нельзя помещать в микроволновку.

1. Нельзя помещать в микроволновку посуду с золотыми или иными металлическими ободками. Дело в том, что переменное электрическое поле микроволнового излучения приводит к появлению в металлических предметах наведенных токов. Сами по себе эти токи ничего страшного не представляют, но в тонком проводящем слое, каким является слой декоративного металлического покрытия на посуде, плотность наведенных токов может оказаться столь высокой, что ободок, а с ним и посуда, перегреется и разрушится.

Вообще в микроволновке не место металлическим предметам с острыми кромками, заостренны ми концами (например, вилкам): высокая плотность наведенного тока на острых кромках проводника может стать причиной оплавления металла или появления электрического разряда.

2. Ни в коем случае не следует ставить в микроволновку плотно закрытые емкости: бутылки, консервные банки, контейнеры с продуктами и т.д., а также яйца (неважно, сырые или вареные). Все перечисленные предметы при нагреве могут разорваться и привести печь в негодность.

К предметам, которые могут разорваться при нагреве, относятся и продукты питания, имеющие кожицу или оболочку, например помидоры, сосиски, сардельки, колбаски и т.д. Чтобы избежать взрывного расширения подобных продуктов, проколите оболочку или кожицу вилкой перед тем, как помещать их в печь. Тогда пар, образующийся внутри при нагреве, сможет спокойно выйти наружу и не разорвет помидор или сосиску.

3. И последнее: нельзя, чтобы в микроволновк е была… пустота. Иными словами, нельзя включать пустую печь , без единого предмета, который поглощал бы микроволны. В качестве минимальной загрузки печи при любом ее включении (например, при проверке работоспособности) принята простая и всем понятная единица: стакан воды (200 мл).

Включение пустой микроволновой печи чревато ее серьезным повреждением. Не встречая на своем пути никаких препятствий, микроволны будут многократно отражаться от внутренних стенок полости печи, а сконцентрированная энергия излучения может вывести печь из строя.

Кстати, если вы хотите довести воду в стакане или ином высоком узком сосуде до кипения, не забудьте опустить в него чайную ложечку перед тем, как поставить стакан в печь. Дело в том, что закипание воды под действием микроволн происходит не так, как, например, в чайнике, где тепло подводится к воде только снизу, со стороны дна. Микроволновый нагрев идет со всех сторон, а если стакан узкий - практически по всему объему воды. В чайнике вода при закипании бурлит, поскольку со дна поднимаются пузырьки растворенного в воде воздуха. В микроволновке вода дойдет до температуры кипения, но пузырьков не будет - это называется эффектом задержки кипения. Зато когда вы достанете стакан из печи, всколыхнув его при этом, - вода в стакане запоздало забурлит, и кипяток может ошпарить вам руки.

Если вы не знаете, из какого материала изготовлена посуда, проделайте простой опыт, который позволит вам определить, годится она для этой цели или нет. Понятное дело, речь не идет о металле: опознать его несложно. Поставьте порожнюю посуду в печь рядом со стаканом, наполненным водой (не забудьте про ложечку!). Включите печь и дайте ей поработать в течение одной минуты на максимальной мощности. Если после этого посуда осталась холодной, значит, она изготовлена из прозрачного для микроволн материала и ею можно пользоваться. Если же посуда нагрелась, значит, она изготовлена из поглощающего микроволны материала и вам вряд ли удастся приготовить в ней пищу.

Опасны ли микроволны?

С микроволновыми печами связан ряд заблуждений, которые объясняются непониманием характера этого вида электромагнитных волн и механизма микроволнового нагрева. Надеемся, что наш рассказ поможет преодолеть такие предубеждения.

Микроволны радиоактивны или делают продукты радиоактивными. Это неверно: микроволны относятся к категории неионизирующих излучений. Они не оказывают никакого радиоактивного воздействия на вещества, биологические ткани и продукты питания.

Микроволны изменяют молекулярную структуру продуктов питания или делают продукты канцерогенными.

Это тоже неверно. Принцип действия микроволн иной, чем у рентгеновских лучей или у ионизирующих излучений, и сделать продукты канцерогенными они не могут. Напротив, поскольку приготовление пищи при помощи микроволн требует очень небольшого количества жиров, готовое блюдо содержит меньше перегоревшего жира с измененной при тепловой обработке молекулярной структурой. Поэтому приготовление пищи с помощью микроволн полезнее для здоровья и не представляет для человека никакой опасности.

Микроволновые печи испускают опасное излучение.

Это не соответствует действительности. Хотя непосредственное воздействие микроволн может вызвать тепловое поражение тканей, риск при пользовании исправной микроволновой печью полностью отсутствует. Конструкцией печи предусмотрены жесткие меры для предотвращения выхода излучения наружу: имеются продублированные устройства блокировки источника микроволн при открывании дверцы печи, а сама дверца исключает выход микроволн за пределы полости. Ни корпус, ни любая иная часть печи, ни помещенные в печь продукты питания не накапливают электромагнитное излучение микроволнового диапазона. Как только печь выключается, излучение микроволн прекращается.

Тем, кто опасается даже близко подходить к микроволновой печи, нужно знать, что микроволны очень быстро затухают в атмосфере. Для иллюстрации приведем такой пример: допустимая западными стандартами мощность СВЧ-излучения на расстоянии 5 см от новой, только что купленной печи составляет 5 милливатт на квадратный сантиметр. Уже на расстоянии полуметра от микроволновки излучение становится в 100 раз слабее (см. рис. 5).

Как следствие столь сильного затухания, вклад микроволн в общий фон окружающего нас электромагнитного излучения не выше, чем, скажем, от телевизора, перед которым мы готовы сидеть часами без всякого опасения, или мобильного телефона, который мы так часто держим у виска. Просто не стоит опираться локтем на работающую микроволновую печь или прислоняться лицом к дверце, пытаясь разглядеть, что происходит в полости. Достаточно отойти от печи на расстояние вытянутой руки, и можно чувствовать себя в полной безопасности.

Откуда берутся микроволны

Источником микроволнового излучения является высоковольтный вакуумный прибор - магнетрон . Чтобы антенна магнетрона излучала микроволны, к нити накала магнетрона необходимо подать высокое напряжение (порядка 3-4 КВт). Поэтому сетевого напряжения питания (220 В) магнетрону недостаточно, и питается он через специальный высоковольтный трансформатор (рис. 6).

Мощность магнетрона современных микроволновых печей составляет 700-850 Вт. Этого достаточно, чтобы за несколько минут довести до кипения воду в 200-граммовом стакане. Для охлаждения магнетрона рядом с ним имеется вентилятор, непрерывно обдувающий его воздухом.

Порожденные магнетроном микроволны поступают в полость печи по волноводу - каналу с металлическими стенками, отражающими СВЧ-излучение. В одних микроволновках волны входят в полость только через одно отверстие (как правило, под "потолком" полости), в других - через два отверстия: у "потолка" и у "дна". Если заглянуть в полость печи, то можно увидеть слюдяные пластинки, которые закрывают отверстия для ввода микроволн. Пластинки не позволяют попадать в волновод брызгам жира, а проходу микроволн они совершенно не мешают, поскольку слюда прозрачна для излучения. Слюдяные пластинки со временем пропитываются жиром, становятся рыхлыми, и их нужно менять на новые. Можно вырезать новую пластинку из листка слюды самому по форме старой, но лучше купить новую пластинку в сервисном центре, который обслуживает технику данной торговой марки, благо стоит она недорого.

Полость микроволновки изготавливается из металла, который может иметь то или иное покрытие. В самых дешевых моделях СВЧ-печей внутренняя поверхность стенок полости покрыта краской "под эмаль". Такое покрытие не отличается стойкостью к воздействию высоких температур, поэтому не применяется в моделях, где дополнительно к микроволнам пища подогревается грилем.

Более стойким является покрытие стенок полости эмалью или специальной керамикой. Стенки с таким покрытием легко моются и выдерживают высокие температуры. Недостатком эмали и керамики является их хрупкость по отношению к ударам. Ставя посуду в полость микроволновки, нетрудно случайно задеть стенку, а это может повредить нанесенное на нее покрытие. Поэтому, если вы приобрели СВЧ-печь с эмалевым или керамическим покрытием стенок, обращайтесь с ней осторожно.

Наиболее прочными и стойкими в отношении ударов являются стенки из нержавеющей стали. Плюс этого материала - прекрасное отражение микроволн. Минус - то, что если хозяйка уделяет не слишком много внимания очистке внутренней полости СВЧ-печи, то не удаленные вовремя брызги жира и пищи могут оставить следы на нержавеющей поверхности.

Объем полости микроволновой печи служит одной из важных потребительских характеристик. Компактные печи с объемом полости 8,5-15 л служат для размораживания или приготовления малых порций пищи. Они идеально подходят для одиноких людей либо для выполнения специальных задач, например для разогрева бутылочки с детским питанием. Печи с полостью объемом 16-19 л годятся для семейной пары. В такую печь можно поместить небольшую курицу. Печи средних габаритов имеют объем полости 20-35 л и подходят для семьи из трех-четырех человек. Наконец, для большой семьи (пять-шесть человек) нужна СВ-печь с полостью объемом 36-45 л, позволяющая испечь гуся, индейку или большой пирог.

Очень важным элементом микроволновой печи является дверца. Она должна дать возможность видеть, что происходит в полости, и при этом исключить выход микроволн наружу. Дверца представляет собой многослойный пирог из стеклянных или пластмассовых пластин (рис. 7).

Кроме того, между пластинами обязательно есть сетка из перфорированного металлического листа. Металл отражает микроволны назад, в полость печи, а отверстия перфорации, которые делают его прозрачным для обзора, имеют диаметр не более 3 мм. Вспомним, что длина волны СВЧ-излучения равна 12,25 см. Ясно, что через трехмиллиметровые отверстия такой волне не пройти.

Чтобы излучение не нашло лазейки там, где дверца прилегает к срезу полости, по периметру дверцы вмонтирован уплотнитель из диэлектрического материала. Он плотно прилегает к переднему торцу корпуса СВЧ-печи при закрытии дверцы. Толщина уплотнителя составляет порядка четверти длины волны СВЧ-излучения. Здесь используется расчет, основанный на физике волн: как известно, волны в противофазе гасят друг друга. Благодаря точно подобранной толщине уплотнителя обеспечивается так называемая отрицательная интерференция волны, проникшей внутрь материала уплотнителя, и отраженной волны, выходящей из уплотнителя наружу. Благодаря этому уплотнитель служит ловушкой, надежно гасящей излучение.

Чтобы полностью исключить возможность генерации микроволн при открытой дверце камеры, используется набор нескольких дублирующих друг друга независимых выключателей. Эти выключатели замыкаются контактными штырями на дверце печи и разрывают цепь питания магнетрона даже при небольшой неплотности закрытия дверцы.

Присмотревшись к микроволновым печам, выставленным в торговом зале крупного магазина бытовой техники, вы сможете заметить, что они различаются по направлению открытия дверцы: у одних печей дверца открывается в сторону (обычно влево), а у других откидывается к вам, образуя небольшую полочку. Последний вариант хоть и встречается реже, но дает дополнительное удобство при пользовании печью: горизонтальная плоскость открытой дверцы служит опорой при загрузке посуды в полость печи или при извлечении готового блюда. Нужно только не перегружать дверцу излишним грузом и не опираться на нее.

Как "перемешать" микроволны

Микроволны, вошедшие по волноводу в полость печи, хаотично отражаются от стенок и рано или поздно попадают на помещенные в печь продукты. При этом на каждую точку, скажем, куриной тушки, которую мы хотим разморозить либо поджарить, приходят волны с самых разных направлений. Неприятность состоит в том, что уже упомянутая нами интерференция может сработать как в "плюс", так и в "минус": пришедшие в фазе волны усилят одна другую и прогреют участок, на который они попали, а пришедшие в противофазе - погасят друг друга, и проку от них не будет никакого.

Чтобы волны проникали в продукты равномерно, их надо как бы "перемешать" в полости печи. Самим же продуктам лучше в буквальном смысле повертеться в полости, подставляя под поток излучения разные бока. Так в микроволновых печах появился поворотный стол - блюдо, опирающееся на небольшие ролики и приводимое в движение электромотором (рис. 8,б).

"Перемешивать" микроволны можно разными способами. Наиболее простое и прямолинейное решение - подвесить под "потолком" полости мешалку: вращающуюся крыльчатку с металлическими лопастями, которые отражают микроволны. Такая мешалка называется диссектор(рис. 8,а). Он хорош своей простотой и, как следствие, низкой стоимостью. Но, к сожалению, высокой равномерностью волнового поля СВЧ-печи с механическим отражателем микроволн не отличаются.

Сочетание вращающегося диссектора и поворотного стола для продуктов иногда носит специальное название. Так, в микроволновых печах Mielе это называется системой Duplomatic.

В некоторых микроволновках (например, модели Y82, Y87, ET6 от "Moulinex") сделаны два поворотных стола, расположенных один над другим. Такая система называется DUO и позволяет готовить два блюда одновременно. Каждый стол имеет отдельный привод через гнездо на задней стенке полости печи.

Более тонким, но зато и эффективным способом достижения равномерного волнового поля является тщательная работа над геометрией внутренней полости печи и создание оптимальных условий для отражения волн от ее стенок. Такие "продвинутые" системы распределения микроволн у каждого производителя печей имеют свое "фирменное" название.

Расписание работы магнетрона

Любая микроволновая печь позволяет владельцу задать мощность, необходимую для выполнения той или иной функции: от минимальной мощности, достаточной для поддержания пищи подогретой, до полной мощности, которая нужна для приготовления пищи в загруженной продуктами печи.

Особенностью магнетронов, применяемых в большинстве микроволновых печей, является то, что они не могут "гореть вполнакала". Поэтому, чтобы печь работала не на полной, а на уменьшенной мощности, можно лишь периодически выключать магнетрон, прекращая на какое-то время генерацию микроволн.

Когда печь работает на минимальной мощности (пусть это будет 90 Вт, при этом пища в полости печи поддерживается в подогретом состоянии), магнетрон включается на 4 с, затем отключается на 17 с, и эти циклы включения-выключения все время чередуются.

Увеличим мощность, скажем, до 160 Вт, если нам нужно разморозить продукты. Теперь магнетрон включается на 6 с, а отключается на 15 с. Прибавим мощность: при 360 Вт длительность циклов включения и выключения почти сравнялась - это 10 с и 11 с соответственно.

Заметим, что суммарная длительность циклов включения и выключения магнетрона остается постоянной (4 + 17, 6 + 15, 10 + 11) и составляет 21 с.

Наконец, если печь включена на полную мощность (в нашем примере это 1000 Вт), магнетрон работает постоянно, не отключаясь.

В последние годы на отечественном рынке появились модели микроволновых печей, в которых питание магнетрона осуществляется через устройство под названием "инвертор". Производители этих печей ("Panasonic", "Siemens") подчеркивают такие преимущества инверторной схемы, как компактность узла излучения микроволн, позволяющего увеличить объем полости при неизменных внешних габаритах печи и более эффективное преобразование потребляемой электроэнергии в энергию микроволн.

Инверторные системы питания широко применяются, например, в кондиционерах воздуха и позволяют плавно менять их мощность. В СВЧ-печах инверторные системы питания дают возможность плавно менять мощность источника излучения, вместо того чтобы отключать его каждые несколько секунд.

Благодаря плавному изменению мощности излучателя микроволн в печах с инвертором температура также меняется плавно, в отличие от традиционных печей, где из-за периодического выключения магнетрона время от времени прекращается подвод излучения. Впрочем, будем справедливы к традиционным печам: эти колебания температуры не столь уж сильны и вряд ли сказываются на качестве приготовленной пищи.

Так же, как в случае кондиционеров, микроволновки с инверторной системой питания стоят дороже, чем с традиционной.

Знаете ли вы …

что в микроволновой печи можно разогревать любое молоко без всякого ущерба для его питательных свойств? Единственное исключение - свежесцеженное грудное молоко: под воздействием микроволн оно утрачивает содержащиеся в нем компоненты, жизненно необходимые младенцу.

что иногда вращение стола лучше отменить. Это позволит готовить большие по объему блюда (лосось, индейку и т. д.), которым просто не повернуться в полости, не задев ее стенок. Воспользуйтесь функцией отмена вращения, если она имеется в вашей микроволновке.

СВЧ-излучение - это электромагнитное излучение, которое состоит из следующих диапазонов: дециметрового, сантиметрового и миллиметрового. Длина его волны колеблется от 1 м (частота в этом случае составляет 300 МГц) до 1 мм (частота равна 300 ГГц).

Широкое практическое применение СВЧ-излучение получило при реализации способа бесконтактного нагрева тел и предметов. В научном мире данное открытие интенсивно используется в исследовании космического пространства. Привычное и наиболее известное его применение - в домашних микроволновых печах. В оно используется для термообработки металлов.

Также на сегодняшний день СВЧ-излучение получило распространение в радиолокации. Антенны, приемники и передатчики на самом деле - дорогостоящие объекты, но они успешно окупаются из-за огромной информационной емкости СВЧ-каналов связи. Популярность его использования в быту и в производстве объясняется тем фактом, что данный тип излучения является всепроникающим, следовательно, нагрев объекта идет изнутри.

Шкала электромагнитных частот, вернее, ее начало и конец, представляет собой две различные формы излучения:

  • ионизирующее (частота волны больше, чем частота видимого света);
  • неионизирующее (частота излучения меньше частоты видимого света).

Для человека представляет опасность сверхвысокочастотное неионизированное излучение, которое влияет напрямую на человеческие биотоки с частотой от 1 до 35 Гц. Как правило, неионизированное СВЧ-излучение провоцирует беспричинную усталость, аритмию сердца, тошноту, снижение общего тонуса организма и сильную головную боль. Такие симптомы должны быть сигналом, что близко находится вредный источник излучения, который может нанести существенный ущерб здоровью. Тем не менее, как только человек покидает опасную зону, недомогание прекращается, и эти неприятные признаки исчезают сами по себе.

Вынужденное излучение открыл еще в 1916 году гениальный ученый А. Эйнштейн. Это явление он описал как влияние внешнего возникающего при переходе электрона в атоме с верхнего на более низкий. Излучение, которое при этом возникает, назвали индуцированным. У него есть еще одно название - вынужденное излучение. Особенность его состоит в том, что атом излучает электромагнитную волну - поляризация, частота, фаза, а также направление распространения у нее такие же, как у первоначальной волны.

Ученые применили как основу в работе современных лазеров, которые, в свою очередь, помогли в создании принципиально новых современных устройств - например, квантовых гигрометров, усилителей яркости и т. д.

Благодаря лазеру появились новые технические направления - такие, как лазерные технологии, голография, нелинейная и интегральная оптики, лазерная химия. Его используют в медицине при сложнейших операциях на глазах, в хирургии. Монохроматичность и когерентность лазера делают его незаменимым в спектроскопии, разделении изотопов, системах измерения и в светолокации.

Микроволновое излучение - это тоже радиоизлучение, только оно относится к инфракрасному диапазону, а также у него наибольшая частота в радиодиапазоне. С этим излучением мы сталкиваемся по нескольку раз в день, используя микроволновую печь для подогрева еды, а также разговаривая по мобильному телефону. Очень интересное и важное применение ему нашли астрономы. Микроволновое излучение используют для изучения космического фона или времен Большого взрыва, который произошел миллиарды лет тому назад. Астрофизики изучают неоднородности свечения в некоторых участках неба, что помогает узнать, как во Вселенной формировались галактики.

Новое на сайте

>

Самое популярное