Домой Спина Формула находится расстояние точками. Расстояние между двумя точками на плоскости

Формула находится расстояние точками. Расстояние между двумя точками на плоскости

Составить маршрут. Как проехать от и до. Расчет расстояний между городами на автомобиле, машине. Проложить маршрут на карте от и до самому между городами. Создать маршрут на машине по точкам на карте из нескольких точек. Калькулятор топлива. Расчет маршрута пешком, на велосипеде.

Создать маршрут на машине по точкам и распечатать. Навигатор онлайн поможет Вам создать маршрут, рассчитать расстояние пешком на карте, проложить маршрут от и до, вы узнаете сколько пешком нужно пройти из пукнта А в пункт Б или рассчитаете расстояние маршрут от точки А до точки В, также можно проложить маршрут через один дополнительный пункт, через который возможно будет проходить ваш маршрут. Вы сможете проложить карту маршрута рассчитать расстояние и время и увидеть данные этого маршрута прямо на карте, также покажет Вам погоду в месте прибытия, калькулятор топлива рассчитает расход бензина на 100 км. После нажатия на кнопку "Рассчитать" - справа появиться описание маршрута, по сути текстовый навигатор: если вы выбирали доп.пункт маршрута, навигатор разделит его участки и посчитает расстояние в каждом участке, а также рассчитает общее расстояние (километраж) от пункта отправления в пункт назначения, также отобразит время в пути. Навигатор онлайн покажет Вам как проехать от и до на машине, автомобиле по Москве, Санкт-Петербургу, СПБ, Владивостоку, Уфе, Челябинску, Казани, Новосибирску, Нижнему Новгороду, Омску, Екатеринбургу, Перми из пункта А в пункт Б. Проложить маршрут можно нескольких видов, в зависимости от способа передвижения, например пешком, на автомобиле, на транспорте (автобус, поезд, метро), на велосипеде (данный способ плохо работает в России из-за отсутствия велосипедных дорожек). Для этого нужно выбрать способ из выпадающего списка и вы с легкостью проложите маршрут и узнаете как доехать до пункта назначения. Здесь сможете узнать, как доехать на авто проложить путь и рассчитать расстояние

Как доехать проложить маршрут на машине до Москвы, Санкт-Петербурга, Новосибирска, Екатеринбурга, Нижнего Новгорода, Казани, Челябинска, Омска, Самары, Ростова-на-Дону, Уфы, Красноярска, Перми, Воронежа, Волгограда, Саратова, Краснодара, Тольятти, Тюмени, Ижевска, Барнаула, Иркутска, Ульяновска, Хабаровска, Владивостока, Ярославля, Махачкалы, Томска, Оренбурга, Новокузнецка, Кемерово, Астрахани, Рязани, Набережные Челны, Пензы, Липецка, Кирова, Тулы, Чебоксар, Калининграда, Курска, Улан-Удэ, Ставрополя, Магнитогорска, Сочи, Белгорода, Нижнего Тагила, Владимира, Архангельска, Калуги, Сургута, Читы, Грозного, Стерлитамака, Костромы, Петрозаводска, Нижневартовска, Йошкар-Олы, Новороссийска

ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ

1. Метод координат: числовая прямая, координаты на прямой; прямоугольная (декартовая) система координат на плоскости; полярные координаты.

Рассмотрим какую–нибудь прямую. Выберем на ней направление (тогда она станет осью) и некоторую точку 0 (начало координат). Прямая с выбранным направлением и началом координат называется координатной прямой (при этом считаем, что единица масштаба выбрана).

Пусть М – произвольная точка на координатной прямой. Поставим в соответствии точке М вещественное число x , равное величине ОМ отрезка : x=ОМ. Число x называется координатой точки М .

Таким образом, каждой точке координатной прямой соответствует определенное вещественное число – ее координата. Справедливо и обратное, каждому вещественному числу x соответствует некоторая точка на координатной прямой, а именно такая точка М , координата которой равна x. Такое соответствие называется взаимно однозначным.

Итак, вещественные числа можно изображать точками координатной прямой, т.е. координатная прямая служит изображением множества всех вещественных чисел. Поэтому множество всех вещественных чисел называют числовой прямой , а любое число – точкой этой прямой. Около точки на числовой прямой часто указывают число – ее координату.

Прямоугольная (или декартовая) система координат на плоскости.

Две взаимно перпендикулярные оси О x и О y , имеющие общее начало О и одинаковую единицу масштаба, образуют прямоугольную (или декартовую) систему координат на плоскости.

Ось ОХ называется осью абсцисс, ось ОY – осью ординат. Точка О пересечения осей называется началом координат. Плоскость, в которой расположены оси ОХ и ОY , называется координатной плоскостью и обозначается О xy .

Итак, прямоугольная система координат на плоскости устанавливает взаимно однозначное соответствие между множеством всех точек плоскости и множеством пар чисел, которое дает возможность при решении геометрических задач применить алгебраические методы. Оси координат разбивают плоскость на 4 части их называют четвертями , квадратными или координатными углами .

Полярные координаты.

Полярная система координат состоит из некоторой точки О , называемой полюсом , и исходящего из нее луча ОЕ , называемого полярной осью. Кроме того, задается единица масштаба для измерения длин отрезков. Пусть задана полярная система координат и пусть М – произвольная точка плоскости. Обозначим через Р – расстояние точки М от точки О , а через φ – угол, на который луч повернуть против часовой стрелки полярную ось для совмещения с лучом ОМ .

Полярными координатами точки М называют числа Р и φ . Число Р считают первой координатой и называют полярным радиусом , число φ – второй координатой и называют полярным углом .

Точка М с полярными координатами Р и φ обозначаются так: М( ;φ). Установим связь между полярными координатами точки и ее прямоугольными координатами.
При этом будем предполагать, что начало прямоугольной системы координат находится в полюсе, а положительная полуось абсцисс совпадает с полярной осью.

Пусть точка М имеет прямоугольные координаты X и Y и полярные координаты Р и φ .

(1)

Доказательство.

Опусти из точек М 1 и М 2 перпендикуляры М 1 В и М 1 А, . так как (x 2 ; y 2) . По теореме, если М 1 (х 1) и М 2 (х 2) – любые две точки и α– расстояние между ними, то α = ‌‌‌‍‌‌|x 2 - x 1 | .

При помощи линейки. Предпочтительно, чтобы она была изготовлена из как можно более тонкого листового материала. В случае, если поверхность, на которой расстелена , не является плоской, поможет портновский метр. А при отсутствии тонкой линейки, и если карту не жалко прокалывать, удобно использовать для измерения циркуль, желательно с двумя иголками. Потом его можно перенести на миллиметровую бумагу и измерить длину отрезка по ней.

Дороги между двумя точками на редко прямыми. Измерить длину линии поможет удобный прибор - курвиметр. Чтобы им воспользоваться, вначале вращением ролика совместите стрелку с нулем. Если курвиметр электронный, устанавливать его на нуль вручную необязательно - достаточно нажать кнопку сброса. Придерживая ролик, прижмите его к начальной точке отрезка так, чтобы риска на корпусе (она расположена над роликом) указывала прямо на эту точку. Затем ведите ролик по линии, пока риска не окажется совмещена с конечной точкой. Прочитайте показания. Учтите, что у некоторых курвиметров имеются две шкалы, одна из которых имеет градуировку в сантиметрах, а другая - в дюймах.

Найдите на карте указатель масштаба - обычно он расположен в правом нижнем углу. Иногда этот указатель представляет собой отрезок калиброванной длины, рядом с которым указано, какому расстоянию он соответствует. Измерьте длину этого отрезка линейкой. Если окажется, например, что он имеет длину в 4 сантиметра, а рядом с ним указано, что соответствует 200 метрам, поделите второе число на первое, и вы узнаете, что каждому на карте соответствует 50 метров на местности. На некоторых вместо отрезка присутствует готовая фраза, которая может выглядеть, например, следующим образом: «В одном сантиметре 150 метров». Также масштаб может быть указан в виде соотношения следующего вида: 1:100000. В этом случае можно подсчитать, что сантиметру на карте соответствует 1000 метров на местности, поскольку 100000/100(сантиметров в метре)=1000 м.

Измеренное линейкой или курвиметром расстояние, выраженное в сантиметрах, умножьте на указанное на карте или рассчитанное количество метров или в одном сантиметре. В результате получится реальное расстояние, выраженное, соответственно, или километрах.

Любая карта представляет собой уменьшенное изображение какой-то территории. Коэффициент, показывающий, насколько изображение уменьшено по отношению к реальному объекту, называется масштабом. Зная его, можно определить расстояние по . Для реально существующих карт на бумажной основе масштаб – величина фиксированная. Для виртуальных, электронных карт эта величина меняется вместе с изменением увеличения изображения карты на экране монитора.

Инструкция

Расстояние по карте можно измерить с помощью инструмента «Линейка» геоинформационных пакетах Google Earth и Yandex Maps, подосновой для карт в которых являются космические спутниковые . Просто включите этот инструмент и кликните мышкой по точке, отмечающей начало вашего маршрута и той, где его планируете завершить. Значение расстояния можно будет узнать в любых заданных единицах измерения.


Расстояние от точки до точки - это длина отрезка, соединяющего эти точки, в заданном масштабе. Таким образом, когда речь идет об измерении расстояния, то требуется знать масштаб (единицу длины), в котором будут проводиться измерения. Поэтому, задачу нахождения расстояния от точки до точки обычно рассматривают либо на координатной прямой, либо в прямоугольной декартовой системе координат на плоскости или в трехмерном пространстве. Другими словами, наиболее часто приходится вычислять расстояние между точками по их координатам.

В этой статье мы, во-первых, напомним, как определяется расстояние от точки до точки на координатной прямой. Далее получим формулы для вычисления расстояния между двумя точками плоскости или пространства по заданным координатам. В заключении, подробно рассмотрим решения характерных примеров и задач.

Навигация по странице.

Расстояние между двумя точками на координатной прямой.

Давайте для начала определимся с обозначениями. Расстояние от точки А до точки В будем обозначать как .

Отсюда можно заключить, что расстояние от точки А с координатой до точки В с координатой равно модулю разности координат , то есть, при любом расположении точек на координатной прямой.

Расстояние от точки до точки на плоскости, формула.

Получим формулу для вычисления расстояния между точками и , заданными в прямоугольной декартовой системе координат на плоскости.

В зависимости от расположения точек А и В возможны следующие варианты.

Если точки А и В совпадают, то расстояние между ними равно нулю.

Если точки А и В лежат на прямой, перпендикулярной оси абсцисс, то точки и совпадают, а расстояние равно расстоянию . В предыдущем пункте мы выяснили, что расстояние между двумя точками на координатной прямой равно модулю разности их координат, поэтому, . Следовательно, .

Аналогично, если точки А и В лежат на прямой, перпендикулярной оси ординат, то расстояние от точки А до точки В находится как .

В этом случае треугольник АВС – прямоугольный по построению, причем и . По теореме Пифагора мы можем записать равенство , откуда .

Обобщим все полученные результаты: расстояние от точки до точки на плоскости находится через координаты точек по формуле .

Полученную формулу для нахождения расстояния между точками, можно использовать когда точки А и В совпадают или лежат на прямой, перпендикулярной одной из координатных осей. Действительно, если А и В совпадают, то . Если точки А и В лежат на прямой, перпендикулярной оси Ох , то . Если А и В лежат на прямой, перпендикулярной оси Оу , то .

Расстояние между точками в пространстве, формула.

Введем прямоугольную систему координат Оxyz в пространстве. Получим формулу для нахождения расстояния от точки до точки .

В общем случае, точки А и В не лежат в плоскости, параллельной одной из координатных плоскостей. Проведем через точки А и В плоскости, перпендикулярные координатным осям Ох , Оу и Oz . Точки пересечения этих плоскостей с координатными осями дадут нам проекции точек А и В на эти оси. Обозначим проекции .


Искомое расстояние между точками А и В представляет собой диагональ прямоугольного параллелепипеда, изображенного на рисунке. По построению, измерения этого параллелепипеда равны и . В курсе геометрии средней школы было доказано, что квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений, поэтому, . Опираясь на информацию первого раздела этой статьи, мы можем записать следующие равенства , следовательно,

откуда получаем формулу для нахождения расстояния между точками в пространстве .

Эта формула также справедлива, если точки А и В

  • совпадают;
  • принадлежат одной из координатных осей или прямой, параллельной одной из координатных осей;
  • принадлежат одной из координатных плоскостей или плоскости, параллельной одной из координатных плоскостей.

Нахождение расстояния от точки до точки, примеры и решения.

Итак, мы получили формулы для нахождения расстояния между двумя точками координатной прямой, плоскости и трехмерного пространства. Пришло время рассмотреть решения характерных примеров.

Число задач, при решении которых конечным этапом является нахождение расстояния между двумя точками по их координатам, поистине огромно. Полный обзор таких примеров выходит за рамки данной статьи. Здесь мы ограничимся примерами, в которых известны координаты двух точек и требуется вычислить расстояние между ними.

В данной статье рассмотрим способы определить расстояние от точки до точки теоретически и на примере конкретных задач. И для начала введем некоторые определения.

Yandex.RTB R-A-339285-1 Определение 1

Расстояние между точками – это длина отрезка, их соединяющего, в имеющемся масштабе. Задать масштаб необходимо, чтобы иметь для измерения единицу длины. Потому в основном задача нахождения расстояния между точками решается при использовании их координат на координатной прямой, в координатной плоскости или трехмерном пространстве.

Исходные данные: координатная прямая O x и лежащая на ней произвольная точка А. Любой точке прямой присуще одно действительное число: пусть для точки А это будет некое число х A , оно же – координата точки А.

В целом можно говорить о том, что оценка длины некого отрезка происходит в сравнении с отрезком, принятым за единицу длины в заданном масштабе.

Если точке А соответствует целое действительное число, отложив последовательно от точки О до точки по прямой О А отрезки – единицы длины, мы можем определить длину отрезка O A по итоговому количеству отложенных единичных отрезков.

К примеру, точке А соответствует число 3 – чтобы попасть в нее из точки О, необходимо будет отложить три единичных отрезка. Если точка А имеет координату - 4 – единичные отрезки откладываются аналогичным образом, но в другом, отрицательном направлении. Таким образом в первом случае, расстояние О А равно 3 ; во втором случае О А = 4 .

Если точка A имеет в качестве координаты рациональное число, то от начала отсчета (точка О) мы откладываем целое число единичных отрезков, а затем его необходимую часть. Но геометрически не всегда возможно произвести измерение. К примеру, затруднительным представляется отложить на координатной прямой дробь 4 111 .

Вышеуказанным способом отложить на прямой иррациональное число и вовсе невозможно. К примеру, когда координата точки А равна 11 . В таком случае возможно обратиться к абстракции: если заданная координата точки А больше нуля, то O A = x A (число принимается за расстояние); если координата меньше нуля, то O A = - x A . В общем, эти утверждения справедливы для любого действительного числа x A .

Резюмируя: расстояние от начала отсчета до точки, которой соответствует действительное число на координатной прямой, равно:

  • 0, если точка совпадает с началом координат;
  • x A , если x A > 0 ;
  • - x A , если x A < 0 .

При этом очевидно, что сама длина отрезка не может быть отрицательной, поэтому, используя знак модуля, запишем расстояние от точки O до точки A с координатой x A : O A = x A

Верным будет утверждение: расстояние от одной точки до другой будет равно модулю разности координат. Т.е. для точек A и B , лежащих на одной координатной прямой при любом их расположении и имеющих соответственно координаты x A и x B: A B = x B - x A .

Исходные данные: точки A и B , лежащие на плоскости в прямоугольной системе координат O x y с заданными координатами: A (x A , y A) и B (x B , y B) .

Проведем через точки А и B перпендикуляры к осям координат O x и O y и получим в результате точки проекции: A x , A y , B x , B y . Исходя из расположения точек А и B далее возможны следующие варианты:

Если точки А и В совпадают, то расстояние между ними равно нулю;

Если точки А и В лежат на прямой, перпендикулярной оси O x (оси абсцисс), то точки и совпадают, а | А В | = | А y B y | . Поскольку, расстояние между точками равно модулю разности их координат, то A y B y = y B - y A , а, следовательно A B = A y B y = y B - y A .

Если точки A и B лежат на прямой, перпендикулярной оси O y (оси ординат) – по аналогии с предыдущим пунктом: A B = A x B x = x B - x A

Если точки A и B не лежат на прямой, перпендикулярной одной из координатных осей, найдем расстояние между ними, выведя формулу расчета:

Мы видим, что треугольник А В С является прямоугольным по построению. При этом A C = A x B x и B C = A y B y . Используя теорему Пифагора, составим равенство: A B 2 = A C 2 + B C 2 ⇔ A B 2 = A x B x 2 + A y B y 2 , а затем преобразуем его: A B = A x B x 2 + A y B y 2 = x B - x A 2 + y B - y A 2 = (x B - x A) 2 + (y B - y A) 2

Сформируем вывод из полученного результата: расстояние от точки А до точки В на плоскости определяется расчётом по формуле с использованием координат этих точек

A B = (x B - x A) 2 + (y B - y A) 2

Полученная формула также подтверждает ранее сформированные утверждения для случаев совпадения точек или ситуаций, когда точки лежат на прямых, перпендикулярных осям. Так, для случая совпадения точек A и B будет верно равенство: A B = (x B - x A) 2 + (y B - y A) 2 = 0 2 + 0 2 = 0

Для ситуации, когда точки A и B лежат на прямой, перпендикулярной оси абсцисс:

A B = (x B - x A) 2 + (y B - y A) 2 = 0 2 + (y B - y A) 2 = y B - y A

Для случая, когда точки A и B лежат на прямой, перпендикулярной оси ординат:

A B = (x B - x A) 2 + (y B - y A) 2 = (x B - x A) 2 + 0 2 = x B - x A

Исходные данные: прямоугольная система координат O x y z с лежащими на ней произвольными точками с заданными координатами A (x A , y A , z A) и B (x B , y B , z B) . Необходимо определить расстояние между этими точками.

Рассмотрим общий случай, когда точки A и B не лежат в плоскости, параллельной одной из координатных плоскостей. Проведем через точки A и B плоскости, перпендикулярные координатным осям, и получим соответствующие точки проекций: A x , A y , A z , B x , B y , B z

Расстояние между точками A и B являет собой диагональ полученного в результате построения параллелепипеда. Согласно построению измерения этого параллелепипеда: A x B x , A y B y и A z B z

Из курса геометрии известно, что квадрат диагонали параллелепипеда равен сумме квадратов его измерений. Исходя из этого утверждения получим равенство: A B 2 = A x B x 2 + A y B y 2 + A z B z 2

Используя полученные ранее выводы, запишем следующее:

A x B x = x B - x A , A y B y = y B - y A , A z B z = z B - z A

Преобразуем выражение:

A B 2 = A x B x 2 + A y B y 2 + A z B z 2 = x B - x A 2 + y B - y A 2 + z B - z A 2 = = (x B - x A) 2 + (y B - y A) 2 + z B - z A 2

Итоговая формула для определения расстояния между точками в пространстве будет выглядеть следующим образом:

A B = x B - x A 2 + y B - y A 2 + (z B - z A) 2

Полученная формула действительна также для случаев, когда:

Точки совпадают;

Лежат на одной координатной оси или прямой, параллельной одной из координатных осей.

Примеры решения задач на нахождение расстояния между точками

Пример 1

Исходные данные: задана координатная прямая и точки, лежащие на ней с заданными координатами A (1 - 2) и B (11 + 2) . Необходимо найти расстояние от точки начала отсчета O до точки A и между точками A и B .

Решение

  1. Расстояние от точки начала отсчета до точки равно модулю координаты этой точки, соответственно O A = 1 - 2 = 2 - 1
  2. Расстояние между точками A и B определим как модуль разности координат этих точек: A B = 11 + 2 - (1 - 2) = 10 + 2 2

Ответ: O A = 2 - 1 , A B = 10 + 2 2

Пример 2

Исходные данные: задана прямоугольная система координат и две точки, лежащие на ней A (1 , - 1) и B (λ + 1 , 3) . λ – некоторое действительное число. Необходимо найти все значения этого числа, при которых расстояние А В будет равно 5 .

Решение

Чтобы найти расстояние между точками A и B , необходимо использовать формулу A B = (x B - x A) 2 + y B - y A 2

Подставив реальные значения координат, получим: A B = (λ + 1 - 1) 2 + (3 - (- 1)) 2 = λ 2 + 16

А также используем имеющееся условие, что А В = 5 и тогда будет верным равенство:

λ 2 + 16 = 5 λ 2 + 16 = 25 λ = ± 3

Ответ: А В = 5 , если λ = ± 3 .

Пример 3

Исходные данные: задано трехмерное пространство в прямоугольной системе координат O x y z и лежащие в нем точки A (1 , 2 , 3) и B - 7 , - 2 , 4 .

Решение

Для решения задачи используем формулу A B = x B - x A 2 + y B - y A 2 + (z B - z A) 2

Подставив реальные значения, получим: A B = (- 7 - 1) 2 + (- 2 - 2) 2 + (4 - 3) 2 = 81 = 9

Ответ: | А В | = 9

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Новое на сайте

>

Самое популярное