Домой Слюнные железы Химический состав клетки - какой он? Химические элементы клетки.

Химический состав клетки - какой он? Химические элементы клетки.

В человеческом организме обнаружено 86 химических элементов, входящих в состав Периодической системы химических элементов Д.И. Менделеева. Эти элементы условно разделяют на четыре группы:

  • макроэлементы – элементы, составляющие основную массу клетки (приблизительно 98-99% в пересчете на сухую массу), среди которых углерод (C), водород (H), кислород (O) и азот (N);
  • элементы, содержание которых в клетке, в пересчете на сухую массу, составляет около 1,9%. Это калий (K), натрий (Na), кальций (Ca), магний (Mg), сера (S), фосфор (P), хлор (Cl) и железо (Fe);
  • элементы, содержание которых в клетке, в пересчете на сухую массу, менее 0,01% — микроэлементы. Это цинк (Zn), медь (Cu), фтор (F), йод (I), кобальт (Co), молибден (Mo) и др.
  • элементы, содержание которых в клетке, в пересчете на сухую массу, менее 0,00001% — ультрамикроэлементы: золото (Au), уран (U), радий (Ra) и др.

Роль химических элементов в клетках живых организмов

Каждый элемент, входящий в состав живого организма, отвечает за выполнение определенной функции (табл. 1).

Таблица 1.Роль химических элементов в клетках живых организмов.

Химический элемент Вещества, в которых химический элемент содержится Процессы, в которых химический элемент участвует

Углерод, водород, кислород, азот

Белки, нуклеиновые кислоты, липиды, углеводы и др. органические вещества

Синтез органических веществ и весь комплекс функций, осуществляемых этими органическими веществами

Калий, натрий

Обеспечение функции мембран, в частности, поддержание электрического потенциала клеточной мембраны, работы Na + /Ka + -насоса, проведение нервных импульсов, анионный, катионный и осмотический балансы

Участие в процессе свертывания крови

Фосфат кальция, карбонат кальция

Костная ткань, зубная эмаль, раковины моллюсков

Пектат кальция

Формирование срединной пластинки и клеточной стенки у растений

Хлорофилл

Фотосинтез

Формирование пространственной структуры белка за счет образования дисульфидных мостиков

Нуклеиновые кислоты, АТФ

Синтез нуклеиновых кислот

Поддержание электрического потенциала клеточной мембраны, работы Na + /Ka + -насоса, проведение нервных импульсов, анионный, катионный и осмотический балансы

Активизация пищеварительных ферментов желудочного сока

Гемоглобин

Транспорт кислорода

Цитохромы

Перенос электронов при фотосинтезе и дыхании

Марганец

Декарбоксилазы, дегидрогеназы

Окисление жирных кислот, участие в процессах дыхания и фотосинтеза

Гемоцианин

Транспорт кислорода у некоторых беспозвоночных

Тирозиназа

Образование меланина

Витамин В 12

Формирование эритроцитов

Алькогольдегидрогеназа

Анаэробное дыхание у растений

Карбоангидраза

Транспорт СО 2 у позвоночных

Фторид кальция

Костная ткань, зубная эмаль

Тироксин

Регуляция основного обмена

Молибден

Нитрогеназа

Фиксация азота

Недостаток какого-либо элемента может привести к заболеванию, и даже гибели организма, так как каждый элемент играет определенную роль. Макроэлементы первой группы составляют основу биополимеров — белков, углеводов, нуклеиновых кислот, а также липидов, без которых жизнь невозможна. Сера входит в состав некоторых белков, фосфор — в состав нуклеиновых кислот, железо — в состав гемоглобина, а магний — в состав хлорофилла. Кальций играет важную роль в обмене веществ

Часть химических элементов, содержащихся в клетке, входит в состав неорганических веществ — минеральных солей и воды. Минеральные соли находятся в клетке, как правило, в виде катионов (К + , Na + , Ca 2+ , Mg 2+) и анионов (HPO 4 2- , H 2 PO 4 — , СI — , НСО 3 —), соотношение которых определяет важную для жизнедеятельности клеток кислотность среды, так слабощелочная среда многих клеток и ее рН почти не изменяется, потому что в ней постоянно поддерживается определенное соотношение катионов и анионов.

Вода играет большую роль в химических реакциях, протекающих в клетке в водных растворах. Она растворяет ненужные организму продукты обмена веществ и тем самым способствует выводу их из организма. Большое содержание воды в клетке придает ей упругость. Вода способствует перемещению различных веществ внутри клетки или из клетки в клетку.

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 2

Задание Как отразится на жизнедеятельности клетки и организма недостаток какого-либо необходимого элемента? Приведите примеры.
Ответ Недостаток какого-либо микроэлемента приводит к уменьшению синтеза того органического вещества, в состав которого этот микроэлемент входит. В результате нарушаются процессы роста, обмена веществ, воспроизведения и т.д. Например, дефицит йода в пище приводит к общему падению активности организма и разрастанию щитовидной железы - эндемическому зобу. Недостаток бора вызывает отмирание верхушечных почек у растений. Нехватка селена может привести к возникновению раковых заболеваний у человека и животных.

Элементный состав организма

По химическому составу клетки разных организмов могут заметно отличаться, однако состоят они из одинаковых элементов. В клетках обнаружено около 70 элементов периодической таблицы Д.И. Менделеева, но только 24 из них имеют важное значение и встречаются в живых организмах постоянно.

Макроэлементы – кислород, углеводород, водород, азот – входят в состав молекул органических веществ. К макроэлементам в последнее время относят калий, натрий, кальций, сера, фосфор, магний, железо, хлор. Их содержание в клетке составляет десятые и сотые доли процента.

Магний входит в состав хлорофилла; железо – гемоглобина; фосфор – костной ткани, нуклеиновых кислот; кальций – костей, черепашек моллюсков, сера – в состав белков; калий, натрий и хлор-ионы берут участие в смене потенциала клеточной мембраны.

Микроэлементы представлены в клетке сотыми и тысячными долями процента. Это цинк, медь, йод, фтор, молибден, бор и др.

Микроэлементы входят в состав ферментов, гормонов, пигментов.

Ультрамикроэлементы – элементы, содержание которых в клетке не превышает 0,000001%. Это уран, золото, ртуть, цезий и др.

Вода и её биологическое значение

Вода количественно занимает среди химических соединений первое место во всех клетках. В зависимости от типа клеток, их функционального состояния, вида организма и условий его нахождения её содержание в клетках существенно колеблется.

Клетки костной ткани содержат не больше 20% воды, жировой ткани – около 40%, мышечные клетки – 76%, а клетки зародыша – более 90%.

Замечание 1

В клетках любого организма с возрастом количество воды заметно уменьшается.

Отсюда – вывод, что чем выше функциональная активность организма в целом и каждой клетки отдельно тем большим в них есть содержание воды, и наоборот.

Замечание 2

Обязательным условием жизненной активности клеток является наличие воды. Она является основной частью цитоплазмы, поддерживает её структуру и стойкость коллоидов, входящих в состав цитоплазмы.

Роль воды в клетке определяется её химическими и структурными свойствами. Прежде всего это связано с небольшим размером молекул, их полярностью и способностью соединяться с помощью водородных связей.

Водородные связи образуются при участии атомов водорода, соединённых с электронегативным атомом (обычно кислородом или азотом). При этом атом Гидрогена приобретает настолько большой позитивный заряд, что может образовать новую связь с другим электронегативным атомом (кислорода или азота). Так же связываются друг с другом молекулы воды, у которых один конец имеет позитивный заряд, а другой – негативный. Такую молекулу называют диполем . Более электронегативный атом кислорода одной молекулы воды притягивается к позитивно заряженному атому водорода другой молекулы с образованием водородной связи.

Благодаря тому, что молекулы воды полярные и способны образовывать водородные связи, вода является совершенным растворителем для полярных веществ, которые называются гидрофильными . Такими являются соединения ионного характера, в которых заряженные частички (ионы) диссоциируют (разделяются) в воде при растворении вещества (соли). Такую же способность имеют и некоторые неионные соединения, в молекуле которых находятся заряженные (полярные) группы (в сахарах, аминокислотах, простых спиртах это ОН-группы). Вещества, состоящие из неполярных молекул (липиды), в воде практически нерастворимы, то есть они гидрофобы .

При переходе вещества в раствор, его структурные частички (молекулы или ионы) приобретают возможность двигаться свободнее, а, соответственно, возрастает реакционная способность вещества. Благодаря этому вода является основной средой, где происходит большинство химических реакций. Кроме того, все окислительно-восстановительные реакции и реакции гидролиза проходят при непосредственном участии воды.

Вода имеет наибольшую удельную теплоёмкость среди всех известных веществ. Это означает, что при существенном увеличении тепловой энергии температура воды повышается сравнительно немного. Это обусловлено использованием значительного количества этой энергии на разрыв водородных связей, которые ограничивают подвижность молекул воды.

Благодаря большой теплоёмкости вода служит защитой для тканей растений и животных от сильного и быстрого повышения температуры, а высокая теплота парообразования является основой для надёжной стабилизации температуры тела организма. Необходимость значительного количества энергии для испарения воды вызвана тем, что между её молекулами существуют водородные связи. Эта энергия поступает из окружающей среды, потому испарение сопровождается охлаждением. Этот процесс можно наблюдать во время потоотделения, в случае тепловой задышки у собак, важна она и в процессе охлаждения транспирирующих органов растений, особенно в пустынных условиях и в условиях сухих степей и периодов засухи в других регионах.

Вода имеет так же высокую теплопроводность, чем обеспечивается равномерное распределение тепла по организму. Таким образом нет риска возникновения локальных «горячих точек», которые могут стать причиной повреждения элементов клеток. Значит, высокая удельная теплоёмкость и высокая для жидкости теплопроводность делают воду идеальной средой для поддержания оптимального теплового режима организма.

Для воды характерно высокое поверхностное натяжение. Это её свойство очень важно для адсорбционных процессов, движения растворов по тканях (кровообращение, восходящее и нисходящее движение по растению и т.п.).

Вода используется как источник кислорода и водорода, которые выделяются во время световой фазы фотосинтеза.

К важным физиологическим свойствам воды относится её способность растворять газы ($O_2$, $CO_2$ и др.). Кроме того, вода как растворитель участвует в процессе осмоса, что играет важную роль в жизнедеятельности клеток и организма.

Свойства углеводорода и его биологическая роль

Если не брать во внимание воду, можно сказать, что большая часть молекул клетки принадлежит к углеводородным, так называемым органическим, соединениям.

Замечание 3

Углеводород, имея уникальные химические способности, фундаментальные для жизни, составляет её химическую основу.

Благодаря небольшому размеру и наличию на внешней оболочке четырёх электронов атом углеводорода может образовывать четыре крепких ковалентных связи с другими атомами.

Самое важное значение имеет способность атомов углеводорода соединяться друг с другом, образуя цепи, кольца и, в конце концов, скелет больших и сложных органических молекул.

К тому же углеводород легко образует ковалентные связи с другими биогенными элементами (обычно с $H, Mg, P, O, S$). Именно этим объясняется существование астрономического количества разнообразных органических соединений, которые обеспечивают существование живых организмов во всех его проявлениях. Разнообразие их проявляется в структуре и размерах молекул, их химических свойствах, степени насыщенности карбонового скелета и различной форме молекул, что определяется углами внутримолекулярных связей.

Биополимеры

Это высокомолекулярные (молекулярная масса 103 – 109) органические соединения, макромолекулы которых состоят из большого количества звеньев, которые повторяются, - мономеров.

К биополимерам относятся белки, нуклеиновые кислоты, полисахариды и их производные (крахмал, гликоген, целлюлоза, гемицеллюлоза, пектиновые вещества, хитин и пр.). Мономерами для них являются соответственно аминокислоты, нуклеотиды и моносахариды.

Замечание 4

Около 90% сухой массы клетки составляют биополимеры: у растений преобладают полисахариды, а у животных – белки.

Пример 1

В клетке бактерий находится около 3 тыс. видов белков и 1 тыс. нуклеиновых кислот, а у человека количество белков оценивают в 5 млн.

Биополимеры не только образуют структурную основу живых организмов, но и в процессах жизнедеятельности играют проводящую роль.

Структурной основой биополимеров являются линейные (белки, нуклеиновые кислоты, целлюлоза) или разветвлённые (гликоген) цепи.

И нуклеиновых кислот, имунные реакции, реакции обмена веществ - и осуществляются благодаря образованию биополимерных комплексов и другим свойствам биополимеров.


Клетка – элементарная единица жизни на Земле. Она обладает всеми признаками живого организма: растет, размножается, обменивается с окружающей средой веществами и энергией, реагирует на внешние раздражители. Начало биологической эволюции связано с появлением на Земле клеточных форм жизни. Одноклеточные организмы представляют собой существующие отдельно друг от друга клетки. Тело всех многоклеточных – животных и растений – построено из большего или меньшего числа клеток, которые являются своего рода блоками, составляющими сложный организм. Независимо от того, представляет ли собой клетка целостную живую систему – отдельный организм или составляет лишь его часть, она наделена набором признаков и свойств, общим для всех клеток.

Химический состав клетки

В клетках обнаружено около 60 элементов периодической системы Менделеева, встречающихся и в неживой природе. Это одно из доказательств общности живой и неживой природы. В живых организмах наиболее распространены водород, кислород, углерод и азот, которые составляют около 98% массы клеток. Такое обусловлено особенностями химических свойств водорода, кислорода, углерода и азота, вследствие чего они оказались наиболее подходящими для образования молекул, выполняющих биологические функции. Эти четыре элемента способны образовывать очень прочные ковалентные связи посредством спаривания электронов, принадлежащих двум атомам. Ковалентно связанные атомы углерода могут формировать каркасы бесчисленного множества различных органических молекул. Поскольку атомы углерода легко образуют ковалентные связи с кислородом, водородом, азотом, а также с серой, органические молекулы достигают исключительной сложности и разнообразия строения.

Кроме четырех основных элементов в клетке в заметных количествах (10 ые и 100 ые доли процента) содержатся железо, калий, натрий, кальций, магний, хлор, фосфор и сера. Все остальные элементы (цинк, медь, йод, фтор, кобальт, марганец и др.) находятся в клетке в очень малых количествах и поэтому называются микроэлементами.

Химические элементы входят в состав неорганических и органических соединений. К неорганическим соединениям относятся вода, минеральные соли, диоксид углерода, кислоты и основания. Органические соединения – это белки, нуклеиновые кислоты, углеводы, жиры (липиды) и липоиды. Кроме кислорода, водорода, углерода и азота в их состав могут входить другие элементы. Некоторые белки содержат серу. Составной частью нуклеиновых кислот является фосфор. Молекула гемоглобина включает железо, магний участвует в построении молекулы хлорофилла. Микроэлементы, несмотря на крайне низкое содержание в живых организмах, играют важную роль в процессах жизнедеятельности. Йод входит в состав гормона щитовидной железы – тироксина, кобальт – в состав витамина В 12 гормон островковой части поджелудочной железы – инсулин – содержит цинк. У некоторых рыб место железа в молекулах пигментов, переносящих кислород, занимает медь.

Неорганические вещества

Вода. Н 2 О – самое распространенное соединение в живых организмах. Содержание ее в разных клетках колеблется в довольно широких пределах: от 10% в эмали зубов до 98% в теле медузы, но среднем она составляет около 80% массы тела. Исключительно важная роль воды в обеспечении процессов жизнедеятельности обусловлена ее физико-химическими свойствами. Полярность молекул и способность образовывать водородные связи делают воду хорошим растворителем для огромного количества веществ. Большинство химических реакций, протекающих в клетке, может происходить только в водном растворе. Вода участвует и во многих химических превращениях.

Общее число водородных связей между молекулами воды изменяется в зависимости от t°. При t° таяния льда разрушается примерно 15% водородных связей, при t° 40°С – половина. При переходе в газообразное состояние разрушаются все водородные связи. Этим объясняется высокая удельная теплоемкость воды. При изменении t° внешней среды вода поглощает или выделяет теплоту вследствие разрыва или новообразования водородных связей. Таким путем колебания t° внутри клетки оказываются меньшими, чем в окружающей среде. Высокая теплота испарения лежит в основе эффективного механизма теплоотдачи у растений и животных.

Вода как растворитель принимает участие в явлениях осмоса, играющего важную роль в жизнедеятельности клетки организма. Осмосом называют проникновение молекул растворителя через полупроницаемую мембрану в раствор какого-либо вещества. Полупроницаемыми называются мембраны, которые пропускают молекулы растворителя, но не пропускают молекулы (или ионы) растворенного вещества. Следовательно, осмос – односторонняя диффузия молекул воды в направлении раствора.

Минеральные соли. Большая часть неорганических в-в клетки находится в виде солей в диссоциированном, либо в твердом состоянии. Концентрация катионов и анионов в клетке и в окружающей ее среде неодинакова. В клетке содержится довольно много К и очень много Nа. Во внеклеточной среде, например в плазме крови, в морской воде, наоборот, много натрия и мало калия. Раздражимость клетки зависит от соотношения концентраций ионов Na + , K + , Ca 2+ , Mg 2+ . В тканях многоклеточных животных К входит в состав многоклеточного вещества, обеспечивающего сцепленность клеток и упорядоченное их расположение. От концентрации солей в большой мере зависят осмотическое давление в клетке и ее буферные свойства. Буферностью называется способность клетки поддерживать слабощелочную реакцию ее содержимого на постоянном уровне. Буферность внутри клетки обеспечивается главным образом ионами Н 2 РО 4 и НРО 4 2- . Во внеклеточных жидкостях и в крови роль буфера играют Н 2 СО 3 и НСО 3 - . Анионы связывают ионы Н и гидроксид-ионы (ОН -), благодаря чему реакция внутри клетки внеклеточных жидкостей практически не меняется. Нерастворимые минеральные соли (например, фосфорнокислый Са) обеспечивает прочность костной ткани позвоночных и раковин моллюсков.

Органические вещества клетки

Белки. Среди органических веществ клетки белки стоят на первом месте как по количеству (10 – 12% от общей массы клетки), так и по значению. Белки представляют собой высокомолекулярные полимеры (с молекулярной массой от 6000 до 1 млн. и выше), мономерами которых являются аминокислоты. Живыми организмами используется 20 аминокислот, хотя их существует значительно больше. В состав любой аминокислоты входит аминогруппа (-NH 2), обладающая основными свойствами, и карбоксильная группа (-СООН), имеющая кислотные свойства. Две аминокислоты соединяются в одну молекулу путем установления связи HN-CO с выделением молекулы воды. Связь между аминогруппой одной аминокислоты и карбоксилом другой называется пептидной. Белки представляют собой полипептиды, содержащие десятки и сотни аминокислот. Молекулы различных белков отличаются друг от друга молекулярной массой, числом, составом аминокислот и последовательностью расположения их в полипептидной цепи. Понятно поэтому, что белки отличаются огромным разнообразием, их количество у всех видов живых организмов оценивается числом 10 10 – 10 12 .

Цепь аминокислотных звеньев, соединенных ковалентное пептидными связями в определенной последовательности, называется первичной структурой белка. В клетках белки имеют вид спирально закрученных волокон или шариков (глобул). Это объясняется тем, что в природном белке полипептидная цепочка уложена строго определенным образом в зависимости от химического строения входящих в ее состав аминокислот.

Вначале полипептидная цепь сворачивается в спираль. Между атомами соседних витков возникает притяжение и образуются водородные связи, в частности, между NH- и СО- группами, расположенными на соседних витках. Цепочка аминокислот, закрученная в виде спирали, образует вторичную структуру белка. В результате дальнейшей укладки спирали возникает специфичная для каждого белка конфигурация, называемая третичной структурой. Третичная структура обусловлена действием сил сцепления между гидрофобными радикалами, имеющимися у некоторых аминокислот, и ковалентными связями между SH- группами аминокислоты цистеина (S-S- связи). Количество аминокислот гидрофобными радикалами и цистеина, а также порядок их расположения в полипептидной цепочке специфичны для каждого белка. Следовательно, особенности третичной структуры белка определяются его первичной структурой. Биологическую активность белок проявляет только в виде третичной структуры. Поэтому замена даже одной аминокислоты в полипептидной цепочке может привести к изменению конфигурации белка и к снижению или утрате его биологической активности.

В некоторых случаях белковые молекулы объединяются друг с другом и могут выполнять свою функцию только в виде комплексов. Так, гемоглобин – это комплекс из четырех молекул и только в такой форме способен присоединять и транспортировать О. подобные агрегаты представляют собой четвертичную структуру белка. По своему составу белки делятся на два основных класса – простые и сложные. Простые белки состоят только из аминокислот нуклеиновые кислоты (нуклеотиды), липиды (липопротеиды), Ме (металлопротеиды), Р (фосфопротеиды).

Функции белков в клетке чрезвычайно многообразны. Одна из важнейших – строительная функция: белки участвуют в образовании всех клеточных мембран и органоидов клетки, а также внутриклеточных структур. Исключительно важное значение имеет ферментативная (каталитическая) роль белков. Ферменты ускоряют химические реакции, протекающие в клетке, в 10 ки и 100 ни миллионов раз. Двигательная функция обеспечивается специальными сократительными белками. Эти белки участвуют во всех видах движений, к которым способны клетки и организмы: мерцание ресничек и биение жгутиков у простейших, сокращение мышц у животных, движение листьев у растений и др. Транспортная функция белков заключается в присоединении химических элементов (например, гемоглобин присоединяет О) или биологически активных веществ (гормонов) и переносе их к тканям и органам тела. Защитная функция выражается в форме выработки особых белков, называемых антителами, в ответ на проникновение в организм чужеродных белков или клеток. Антитела связывают и обезвреживают чужеродные вещества. Белки играют немаловажную роль как источники энергии. При полном расщеплении 1г. белков выделяется 17,6 кДж (~4,2 ккал).

Углеводы. Углеводы, или сахариды – органические вещества с общей формулой (СН 2 О) n . У большинства углеводов число атомов Н вдвое больше числа атомов О, как в молекулах воды. Поэтому эти вещества и были названы углеводами. В живой клетке углеводы находятся в количествах, не превышающих 1-2, иногда 5% (в печени, в мышцах). Наиболее богаты углеводами растительные клетки, где их содержание достигает в некоторых случаях 90% от массы сухого вещества (семена, клубни картофеля и т.д.).

Углеводы бывают простые и сложные. Простые углеводы называются моносахаридами. В зависимости от числа атомов углевода в молекуле моносахариды называются триозами, тетрозами, пентозами или гексозами. Из шести углеродных моносахаридов – гексоз – наиболее важное значение имеют глюкоза, фруктоза и галактоза. Глюкоза содержится в крови (0,1-0,12%). Пентозы рибоза и дезоксирибоза входят в состав нуклеиновых кислот и АТФ. Если в одной молекуле объединяются два моносахарида, такое соединение называется дисахаридом. Пищевой сахар, получаемый из тростника или сахарной свеклы, состоит из одной молекулы глюкозы и одной молекулы фруктозы, молочный сахар – из глюкозы и галактозы.

Сложные углеводы, образованные многими моносахаридами, называются полисахаридами. Мономером таких полисахаридов, как крахмал, гликоген, целлюлоза, является глюкоза. Углеводы выполняют две основные функции: строительную и энергетическую. Целлюлоза образует стенки растительных клеток. Сложный полисахарид хитин служит главным структурным компонентом наружного скелета членистоногих. Строительную функцию хитин выполняет и у грибов. Углеводы играют роль основного источника энергии в клетке. В процессе окисления 1 г. углеводов освобождается 17,6 кДж (~4,2 ккал). Крахмал у растений и гликоген у животных откладываются в клетках и служат энергетическим резервом.

Нуклеиновые кислоты. Значение нуклеиновых кислот в клетке очень велико. Особенности их химического строения обеспечивают возможность хранения, переноса и передачи по наследству дочерним клеткам информации о структуре белковых молекул, которые синтезируются в каждой ткани на определенном этапе индивидуального развития. Поскольку большинство свойств и признаков клеток обусловлено белками, то понятно, что стабильность нуклеиновых кислот – важнейшее условие нормальной жизнедеятельности клеток и целых организмов. Любые изменения структуры клеток или активности физиологических процессов в них, влияя, таким образом, на жизнедеятельность. Изучение структуры нуклеиновых кислот имеет исключительно важное значение для понимания наследования признаков у организмов и закономерностей функционирования, как отдельных клеток, так и клеточных систем – тканей и органов.

Существуют 2 типа нуклеиновых кислот – ДНК и РНК. ДНК – полимер, состоящий из двух нуклеотидных спиралей, заключенных так, что образуется двойная спираль. Мономеры молекул ДНК представляют собой нуклеотиды, состоящие из азотистого основания (аденина, тимина, гуанина или цитозина), углевода (дезоксирибозы) и остатка фосфорной кислоты. Азотистые основания в молекуле ДНК соединены между собой неодинаковым количеством Н-связей и располагаются попарно: аденин (А) всегда против тимина (Т), гуанин (Г) против цитозина (Ц). Схематически расположение нуклеотидов в молекуле ДНК можно изобразить так:

Рис.1.Расположение нуклеотидов в молекуле ДНК

Из рис.1. видно, что нуклеотиды соединены друг с другом не случайно, а избирательно. Способность к избирательному взаимодействию аденина с тимином и гуанина с цитозином называется комплементарностью. Комплементарное взаимодействие определенных нуклеотидов объясняется особенностями пространственного расположения атомов в их молекулах, которые позволяют им сближаться и образовывать Н-связи. В полинуклеотидной цепочке соседние нуклеотиды связаны между собой через сахар (дезоксирибозу) и остаток фосфорной кислоты. РНК так же, как и ДНК, представляет собой полимер, мономерами которого являются нуклеотиды. Азотистые основания трех нуклеотидов те же самые, что входят в состав ДНК (А, Г, Ц); четвертое – урацил (У) – присутствует в молекуле РНК вместо тимина. Нуклеотиды РНК отличаются от нуклеотидов ДНК и по строению входящего в их состав углевода (рибоза вместо дизоксирибозы).

В цепочке РНК нуклеотиды соединяются путем образования ковалентных связей между рибозой одного нуклеотида и остатком фосфорной кислоты другого. По структуре различаются двух цепочечные РНК. Двух цепочечные РНК являются хранителями генетической информации у ряда вирусов, т.е. выполняют у них функции хромосом. Одно цепочечные РНК осуществляют перенос информации о структуре белков от хромосомы к месту их синтеза и участвуют в синтезе белков.

Существует несколько видов одно цепочечной РНК. Их названия обусловлены выполняемой функцией или местом нахождения в клетке. Большую часть РНК цитоплазмы (до 80-90%) составляет рибосомальная РНК (рРНК), содержащаяся в рибосомах. Молекулы рРНК относительно невелики и состоят в среднем из 10 нуклеотидов. Другой вид РНК (иРНК), переносящие к рибосомам информацию о последовательности аминокислот в белках, которые должны синтезироваться. Размер этих РНК зависит от длины участка ДНК, на котором они были синтезированы. Транспортные РНК выполняют несколько функций. Они доставляют аминокислоты к месту синтеза белка, "узнают" (по принципу комплементарности) триплет и РНК, соответствующий переносимой аминокислоте, осуществляют точную ориентацию аминокислоты на рибосоме.

Жиры и липоиды. Жиры представляют собой соединения жирных высокомолекулярных кислот и трехатомного спирта глицерина. Жиры не растворяются в воде – они гидрофобны. В клетке всегда есть и другие сложные гидрофобные жироподобные вещества, называемые липоидами. Одна из основных функций жиров – энергетическая. В ходе расщепления 1 г. жиров до СО 2 и Н 2 О освобождается большое количество энергии – 38,9 кДж (~9,3 ккал). Содержание жира в клетке колеблется в пределах 5-15% от массы сухого вещества. В клетках живой ткани количество жира возрастает до 90%. Главная функция жиров в животном (и отчасти - растительном) мире - запасающая.

При полном окислении 1 г жира (до углекислого газа и воды) выделяется около 9 ккал энергии. (1 ккал = 1000 кал; калория (кал, cal) - внесистемная единица количества работы и энергии, равная количеству теплоты, необходимому для нагревания 1 мл воды на 1 °C при стандартном атмосферном давлении 101,325 кПа; 1 ккал = 4,19 кДж). При окислении (в организме) 1 г белков или углеводов выделяется только около 4 ккал/г. У самых разных водных организмов - от одноклеточных диатомовых водорослей до гигантских акул - жир случит «поплавком», уменьшая среднюю плотность тела. Плотность животных жиров составляет около 0,91-0,95 г/см³. Плотность костной ткани позвоночных близка к 1,7-1.8 г/см³, а средняя плотность большинства других тканей близка к 1 г/см³. Понятно, что жира нужно довольно много, чтобы «уравновесить» тяжелый скелет.

Жиры и липоиды выполняют и строительную функцию: они входят в состав клеточных мембран. Благодаря плохой теплопроводности жир способен к защитной функции. У некоторых животных (тюлени, киты) он откладывается в подкожной жировой ткани, образуя слой толщиной до 1 м. Образование некоторых липоидов предшествует синтезу ряда гормонов. Следовательно, этим веществам присуща и функция регуляции обменных процессов.



В клетках разных организмов обнаружено около 70 элементов периодической системы элементов Д. И. Менделеева, но лишь 24 из них имеют вполне установленное значение и встречаются постоянно во всех типах клеток.

Наибольший удельный вес в элементном составе клетки приходится на кислород, углерод, водород и азот. Это так называемые основные или биогенные элементы . На долю этих элементов приходится более 95 % массы клеток, причем их относительное содержание в живом веществе гораздо выше, чем в земной коре. Жизненно важными являются также кальций, фосфор, сера, калий, хлор, натрий, магний, йод и железо. Их содержание в клетке исчисляется десятыми и сотыми долями процента. Перечисленные элементы составляют группу макроэлементов .

Другие химические элементы: медь, марганец, молибден, кобальт, цинк, бор, фтор, хром, селен, алюминий, йод, железо, кремний - содержатся в исключительно малых количествах (менее 0,01 % массы клеток). Они относятся к группе микроэлементов .

Процентное содержание в организме того или иного элемента никоим образом не характеризует степень его важности и необходимости в организме. Так, например, многие микроэлементы входят в состав различных биологически активных веществ - ферментов, витаминов (кобальт входит в состав витамина B 12), гормонов (йод входит в состав тироксина);оказывают влияние на рост и развитие организмов (цинк, марганец, медь), кроветворение (железо, медь), процессы клеточного дыхания (медь, цинк) и т. д. Содержание и значение для жизнедеятельности клеток и организма в целом различных химических элементов приведено в таблице:

Важнейшие химические элементы клетки
Элемент Символ Примерное содержание, % Значение для клетки и организма
Кислород O 62 Входит в состав воды и органических веществ; участвует в клеточном дыхании
Углерод C 20 Входит в состав всех органических веществ
Водород H 10 Входит в состав воды и органических веществ; участвует в процессах преобразования энергии
Азот N 3 Входит в состав аминокислот, белков, нуклеиновых кислот, АТФ, хлорофилла, витаминов
Кальций Ca 2,5 Входит в состав клеточной стенки у растений, костей и зубов, повышает свертывание крови и сократимость мышечных волокон
Фосфор P 1,0 Входит в состав костной ткани и зубной эмали, нуклеиновых кислот, АТФ, некоторых ферментов
Сера S 0,25 Входит в состав аминокислот (цистеин, цистин и метионин), некоторых витаминов, участвует в образовании дисульфидных связей при образовании третичной структуры белков
Калий K 0,25 Содержится в клетке только в виде ионов, активирует ферменты белкового синтеза, обуславливает нормальный ритм сердечной деятельности, участвует в процессах фотосинтеза, генерации биоэлектрических потенциалов
Хлор Cl 0,2 Преобладает отрицательный ион в организме животных. Компонент соляной кислоты в желудочном соке
Натрий Na 0,10 Содержится в клетке только в виде ионов, обуславливает нормальный рит сердечной деятельности, влияет на синтез гормонов
Магний Mg 0,07 Входит в состав молекул хлорофилла, а также костей и зубов, активирует энергетический обмен и синтез ДНК
Йод I 0,01 Входит в состав гормонов щитовидной железы
Железо Fe 0,01 Входит в состав многих ферментов, гемоглобина и миоглобина, участвует в биосинтезе хлорофилла, в транспорте электронов, в процессах дыхания и фотосинтеза
Медь Cu Следы Входит в состав гемоцианинов у беспозвоночных, в состав некоторых ферментов, участвует в процессах кроветворения, фотосинтеза, синтеза гемоглобина
Марганец Mn Следы Входит в состав или повышает активность некоторых ферментов, участвует в развитии костей, ассимиляции азота и процессе фотосинтеза
Молибден Mo Следы Входит в состав некоторых ферментов (нитратредуктаза), участвует в процессах связывания атмосферного азота клубеньковыми бактериями
Кобальт Co Следы Входит в состав витамина B 12 , участвует в фиксации атмосферного азота клубеньковыми бактериями
Бор B Следы Влияет на ростовые процессы растений, активирует восстановительные ферменты дыхания
Цинк Zn Следы Входит в состав некоторых ферментов, расщепляющих полипептиды, участвует в синтезе растительных гормонов (ауксинов) и гликолизе
Фтор F Следы Входит в состав эмали зубов и костей

Новое на сайте

>

Самое популярное