Домой Воспаления легких Наблюдение интерференции и дифракции света лабораторная 11. Фотоотчет «Наблюдение интерференции и дифракции света в домашних условиях

Наблюдение интерференции и дифракции света лабораторная 11. Фотоотчет «Наблюдение интерференции и дифракции света в домашних условиях

Лабораторная работа № 13

Тема: «Наблюдение интерференции и дифракции света»

Цель работы: экспериментально изучить явление интерференции и дифракции.

Оборудование: электрическая лампа с прямой нитью накала (одна на класс), две стеклянные пластинки, стеклянная трубка, стакан с раствором мыла, кольцо проволочное с ручкой диаметром 30 мм., компакт-диск, штангенциркуль, капроновая ткань.

Теория:

Интерференция – явление характерное для волн любой природы: механических, электромагнитных.

Интерференция волн сложение в пространстве двух (или нескольких) волн, при котором в разных его точках получается усиление или ослабление результирующей волны .

Обычно интерференция наблюдается при наложении волн, испущенных одним и тем же источником света, пришедших в данную точку разными путями. От двух независимых источников невозможно получить интерференционную картину, т.к. молекулы или атомы излучают свет отдельными цугами волн, независимо друг от друга. Атомы испускают обрывки световых волн (цуги), в которых фазы колебаний случайные. Цуги имеют длину около 1метра. Цуги волн разных атомов налагаются друг на друга. Амплитуда результирующих колебаний хаотически меняется со временем так быстро, что глаз не успевает эту смену картин почувствовать. Поэтому человек видит пространство равномерно освещенным. Для образования устойчивой интерференционной картины необходимы когерентные (согласованные) источники волн.

Когерентными называются волны, имеющие одинаковую частоту и постоянную разность фаз.

Амплитуда результирующего смещения в точке С зависит от разности хода волн на расстоянии d2 – d1.

Условие максимума

, (Δd=d 2 -d 1 )

где k=0; ± 1; ± 2; ± 3 ;…

(разность хода волн равна четному числу полуволн)

Волны от источников А и Б придут в точку С в одинаковых фазах и “усилят друг друга”.

φ А =φ Б - фазы колебаний

Δφ=0 - разность фаз

А=2Х max

Условие минимума

, (Δd=d 2 -d 1 )

где k=0; ± 1; ± 2; ± 3;…

(разность хода волн равна нечетному числу полуволн)

Волны от источников А и Б придут в точку С в противофазах и “погасят друг друга”.

φ А ≠φ Б - фазы колебаний

Δφ=π - разность фаз

А=0 – амплитуда результирующей волны.

Интерференционная картина – регулярное чередование областей повышенной и пониженной интенсивности света.

Интерференция света – пространственное перераспределение энергии светового излучения при наложении двух или нескольких световых волн.

Вследствие дифракции свет отклоняется от прямолинейного распространения (например, близи краев препятствий).

Дифракция явление отклонения волны от прямолинейного распространения при прохождении через малые отверстия и огибании волной малых препятствий .

Условие проявления дифракции : d < λ , где d – размер препятствия, λ - длина волны. Размеры препятствий (отверстий) должны быть меньше или соизмеримы с длиной волны.

Существование этого явления (дифракции) ограничивает область применения законов геометрической оптики и является причиной предела разрешающей способности оптических приборов.

Дифракционная решетка – оптический прибор, представляющий собой периодическую структуру из большого числа регулярно расположенных элементов, на которых происходит дифракция света. Штрихи с определенным и постоянным для данной дифракционной решетки профилем повторяются через одинаковый промежуток d (период решетки). Способность дифракционной решетки раскладывать падающий на нее пучек света по длинам волн является ее основным свойством. Различают отражательные и прозрачные дифракционные решетки. В современных приборах применяют в основном отражательные дифракционные решетки .

Условие наблюдения дифракционного максимума :

d·sinφ=k·λ, где k=0; ± 1; ± 2; ± 3; d - период решетки, φ - угол, под которым наблюдается максимуи, а λ - длина волны.

Из условия максимума следует sinφ=(k·λ)/d .

Пусть k=1, тогда sinφ кр =λ кр /d и sinφ ф =λ ф /d.

Известно, что λ кр >λ ф, следовательно sinφ кр >sinφ ф . Т.к. y= sinφ ф - функция возрастающая, то φ кр >φ ф

Поэтому фиолетовый цвет в дифракционном спектре располагается ближе к центру.

В явлениях интерференции и дифракции света соблюдается закон сохранения энергии . В области интерференции световая энергия только перераспределяется, не превращаясь в другие виды энергии. Возрастание энергии в некоторых точках интерференционной картины относительно суммарной световой энергии компенсируется уменьшением её в других точках (суммарная световая энергия – это световая энергия двух световых пучков от независимых источников). Светлые полоски соответствуют максимумам энергии, темные – минимумам.

Ход работы:

Опыт 1. Опустите проволочное кольцо в мыльный раствор. На проволочном кольце получается мыльная плёнка.


Расположите её вертикально. Наблюдаем светлые и тёмные горизонтальные полосы, изменяющиеся по ширине по мере изменения толщины плёнки

Объяснение. Появление светлых и темных полос объясняется интерференцией световых волн, отраженных от поверхности пленки. треугольник d = 2h. Разность хода световых волн равна удвоенной толщине плёнки. При вертикальном расположении пленка имеет клинообразную форму. Разность хода световых волн в верхней её части будет меньше, чем в нижней. В тех местах пленки, где разность хода равна четному числу полуволн, наблюдаются светлые полосы. А при нечетном числе полуволн – темные полосы. Горизонтальное расположение полос объясняется горизонтальным расположением линий равной толщины пленки.

Освещаем мыльную пленку белым светом (от лампы). Наблюдаем окрашенность светлых полос в спектральные цвета: вверху – синий, внизу – красный.

Объяснение. Такое окрашивание объясняется зависимостью положения светлых полос о длины волн падающего цвета.

Наблюдаем также, что полосы, расширяясь и сохраняя свою форму, перемещаются вниз.

Объяснение. Это объясняется уменьшением толщины пленки, так как мыльный раствор стекает вниз под действием силы тяжести.

Опыт 2. С помощью стеклянной трубки выдуйте мыльный пузырь и внимательно рассмотрите его. При освещении его белым светом наблюдайте образование цветных интерференционных колец, окрашенных в спектральные цвета. Верхний край каждого светлого кольца имеет синий цвет, нижний – красный. По мере уменьшения толщины пленки кольца, также расширяясь, медленно перемещаются вниз. Их кольцеобразную форму объясняют кольцеобразной формой линий равной толщины.

Ответьте на вопросы:

  1. Почему мыльные пузыри имеют радужную окраску?
  2. Какую форму имеют радужные полосы?
  3. Почему окраска пузыря все время меняется?

Опыт 3. Тщательно протрите две стеклянные пластинки, сложите вместе и сожмите пальцами. Из-за неидеальности формы соприкасающихся поверхностей между пластинками образуются тончайшие воздушные пустоты.

При отражении света от поверхностей пластин, образующих зазор, возникают яркие радужные полосы – кольцеобразные или неправильной формы. При изменении силы, сжимающей пластинки, изменяются расположение и форма полос. Зарисуйте увиденные вами картинки.


Объяснение: Поверхности пластинок не могут быть совершенно ровными, поэтому соприкасаются они только в нескольких местах. Вокруг этих мест образуются тончайшие воздушные клинья различной формы, дающие картину интерференции. В проходящем свете условие максимума 2h=kl

Ответьте на вопросы:

  1. Почему в местах соприкосновения пластин наблюдаются яркие радужные кольцеобразные или неправильной формы полосы?
  2. Почему с изменением нажима изменяются форма и расположение интерференционных полос?

Опыт 4. Рассмотрите внимательно под разными углами поверхность компакт-диска (на которую производится запись).


Объяснение : Яркость дифракционных спектров зависит от частоты нанесенных на диск бороздок и от величины угла падения лучей. Почти параллельные лучи, падающие от нити лампы, отражаются от соседних выпуклостей между бороздками в точках А и В. Лучи, отраженные под углом равным углу падения, образуют изображение нити лампы в виде белой линии. Лучи, отраженные под иными углами имеют некоторую разность хода, вследствие чего происходит сложение волн.

Что вы наблюдаете? Объясните наблюдаемые явления. Опишите интерференционную картину.

Поверхность компакт-диска представляет собой спиральную дорожку с шагом соизмеримым с длиной волны видимого света. На мелкоструктурной поверхности проявляются дифракционные и интерференционные явления. Блики компакт- дисков имеют радужную окраску.

Опыт 5. Сдвигаем ползунок штангенциркуля до образования между губками щели шириной 0,5 мм.

Приставляем скошенную часть губок вплотную к глазу (располагая щель вертикально). Сквозь эту щель смотрим на вертикально расположенную нить горящей лампы. Наблюдаем по обе стороны от нити параллельные ей радужные полоски. Изменяем ширину щели в пределах 0,05 – 0,8 мм. При переходе к более узким щелям полосы раздвигаются, становятся шире и образуют различимые спектры. При наблюдении через самую широкую щель полосы очень узки и располагаются близко одна к другой. Зарисуйте в тетрадь увиденную картину. Объясните наблюдаемые явления .

Опыт 6. Посмотрите сквозь капроновую ткань на нить горящей лампы. Поворачивая ткань вокруг оси, добейтесь четкой дифракционной картины в виде двух скрещенных под прямым углом дифракционных полос.

Объяснение : В центре краста виден дифракционный максимум белого цвета. При k=0 разность хода волн равна нулю, поэтому центральный максимум получается белого цвета. Крест получается потому, что нити ткани представляют собой две сложенные вместе дифракционные решетки со взаимно перпендикулярными щелями. Появление спектральных цветов объясняется тем, что белый свет состоит из волн различной длины. Дифракционный максимум света для различных волн получается в различных местах.

Зарисуйте наблюдаемый дифракционный крест. Объясните наблюдаемые явления.

Запишите вывод. Укажите, в каких из проделанных вами опытов наблюдалось явление интерференции, а в каких дифракции .

Контрольные вопросы:

  1. Что такое свет?
  2. Кем было доказано, что свет – это электромагнитная волна?
  3. Что называют интерференцией света? Каковы условия максимума и минимума при интерференции?
  4. Могут ли интерферировать световые волны идущие от двух электрических ламп накаливания? Почему?
  5. Что называют дифракцией света?
  6. Зависит ли положение главных дифракционных максимумов от числа щелей решетки?

Тема: Оптика

Урок: Практическая работа по теме «Наблюдение интерференции и дифракции света»

Название: «Наблюдение интерференции и дифракции света».

Цель: экспериментально изучить интерференцию и дифракцию света.

Оборудование: лампа с прямой нитью накала, 2 стеклянные пластины, проволочная рамка, мыльный раствор, штангенциркуль, плотная бумага, кусок батиста, капроновая нить, зажим.

Опыт 1

Наблюдение картины интерференции с помощью стеклянных пластин.

Берем две стеклянные пластины, перед этим тщательно их протираем, затем плотно складываем и сжимаем. Ту интерференционную картину, которую увидим в пластинах, нужно зарисовать.

Чтобы увидеть изменение картины от степени сжатия стекол, необходимо взять устройство зажима и с помощью винтов сжать пластины. В результате этого картина интерференции изменяется.

Опыт 2

Интрференция на тонких пленках.

Чтобы пронаблюдать данный опыт, возьмем мыльную воду и проволочную рамку, затем посмотрим, как образуется тонкая пленка. Если рамку опустить в мыльную воду, то после поднятия в ней видна образовавшаяся мыльная пленка. Наблюдая в отраженном свете за этой пленкой, можно увидеть полосы интерференции.

Опыт 3

Интерференция на мыльных пузырях.

Для наблюдения воспользуемся мыльным раствором. Выдуваем мыльные пузыри. То, как пузыри переливаются, это и есть интерференция света (см. Рис. 1).

Рис. 1. Интерференция света в пузырях

Картина, которую мы наблюдаем, может выглядеть следующим образом (см. Рис. 2).

Рис. 2. Интерференционная картина

Это интерференция в белом свете, когда мы положили линзу на стекло и осветили ее простым белым светом.

Если воспользоваться светофильтрами и освещать монохроматическим светом, то картина интерференции меняется (меняется чередование темных и светлых полос) (см. Рис. 3).

Рис. 3. Использование светофильтров

Теперь перейдем к наблюдению дифракции.

Дифракция - это волновое явление, присущее всем волнам, которое наблюдается на краевых частях каких-либо предметов.

Опыт 4

Дифракция света на малой узкой щели.

Создадим щель между губками штангенциркуля, с помощью винтов передвигая его части. Для того чтобы пронаблюдать дифракцию света, зажмем между губками штангенциркуля лист бумаги, таким образом, чтобы потом этот лист бумаги можно было вытащить. После этого перпендикулярно подносим эту узкую щель вплотную к глазу. Наблюдая через щель яркий источник света (лампу накаливания), можно увидеть дифракцию света (см. Рис. 4).

Рис. 4. Дифракция света на тонкой щели

Опыт 5

Дифракция на плотной бумаге

Если взять плотный лист бумаги и сделать бритвой надрез, то, поднеся этот разрез бумаги вплотную к глазу и меняя расположение соседних двух листочков, можно наблюдать дифракцию света.

Опыт 6

Дифракция на малом отверстии

Чтобы пронаблюдать такую дифракцию, нам потребуется плотный лист бумаги и булавка. С помощью булавки делаем в листе маленькое отверстие. Затем подносим отверстие вплотную к глазу и наблюдаем яркий источник света. В этом случае видна дифракция света (см. Рис. 5).

Изменение дифракционной картины зависит от величины отверстия.

Рис. 5. Дифракция света на малом отверстии

Опыт 7

Дифракция света на кусочке плотной прозрачной ткани (капрон, батист).

Возьмем батистовую ленту и, расположив ее на небольшом расстоянии от глаз, посмотрим сквозь ленту на яркий источник света. Мы увидим дифракцию, т.е. разноцветные полосы и яркий крест, который будет состоять из линий дифракционного спектра.

На рисунке представлены фотографии дифракции, которую мы наблюдаем (см. Рис. 6).

Рис. 6. Дифракция света

Отчет: в нем должны быть представлены рисунки интерференции и дифракции, которые наблюдались в ходе работы.

Изменение линий характеризует, как происходит та или иная процедура преломления и сложения (вычитания) волн.

На основании дифракционной картины, полученной от щели, создан специальный прибор - дифракционная решетка . Она представляет собой набор щелей, через которые проходит свет. Этот прибор нужен для того, чтобы проводить детальные исследования света. Например, с помощью дифракционной решетки можно определить длину световой волны.

  1. Физика ().
  2. Первое сентября. Учебно-методическая газета ().

Цель работы: пронаблюдать интерференцию и дифракцию света.

Приборы и принадлежности:

пластины стеклянные 2шт.

лоскуты капроновые или батистовые 1шт.

засвеченная фотопленка с прорезью 1шт.

сделанной лезвием бритвы 1шт.

грампластинка (или осколок грампластинки) 1шт.

штангенциркуль 1шт.

лампа с прямой нитью накала (одна на всю группу) 1шт.

цветные карандаши 6шт.

Выполнение работы:

1. Наблюдаем интерференционную картину:

2. Стеклянные пластины тщательно протираем, складываем вместе и сжимаем пальцами.

3. Рассматриваем пластины в отраженном свете на темном фоне.

4. В отдельных местах соприкосновения пластин наблюдаем яркие радужные кольцеобразные или неправильной формы полосы.

5. Замечаем изменения формы и расположения полученных интерференционных полос с изменением нажима.

6. Видим интерференционную картину в проходящем свете и зарисовываем её.

Рисунок 1. Интерференционная картина.

7. Рассмотреть интерференционную картину при попадании света на поверхность компакт диска и зарисовать её в протокол.

Рисунок 2. Интерференционная картина.


8. Наблюдаем дифракционную картину:

9. Устанавливаем между губками штангенциркуля щель шириной 0,5 мм.

10. Приставляем щель вплотную к глазу, расположив её вертикально.

11. Смотря сквозь щель на вертикально расположенную светящуюся нить лампы, наблюдаем по обе стороны нити радужные полосы (дифракционные спектры).

12. Изменяя ширину щели от 0,5 до 0,8 мм, замечаем, как это изменение влияет на дифракционные спектры.

13. Зарисовываем дифракционную картину.

Рисунок 3. Дифракционная картина.

14. Наблюдаем дифракционные спектры в проходящем свете с помощью лоскутов капрона или батиста, засвеченной фотопленки с прорезью и рисуем их в отчёт.

Рисунок 4. Дифракционная картина.

Вывод:

Ответы на контрольные вопросы:

Лабораторная работа № 17.

Тема: Определение длины световой волны при помощи дифракционной решётки.



Цель работы: Определение длины световой волны при помощи дифракционной решетки.

Приборы и принадлежности:

прибор для определения длины световой волны 1шт.

дифракционная решетка 1шт.

источник света 1шт.

Выполнение работы:

1. Собираем установку, используя рисунок 1.1 методических указаний.

Рисунок 1. Схема установки по определению длины световой волны.

2. Устанавливаем шкалу на наибольшем расстоянии от дифракционной решетки и направляем установку на источник света, получив дифракционный спектр =

3. Определяем смещение луча от щели до середины фиолетовой части спектра

4. Вычисляем значение длины световой волны фиолетовых лучей, используя формулу:

5. Повторяем опыт для зелёного, красного цвета дифракционного спектра и вычисляем длину световой волны зеленых и красных лучей по формулам:

6. Сравниваем полученные значения со средними табличными значениями из пункта 3 методических указаний и вычисляем относительную погрешность измерений по формулам:


Тема: Наблюдение явлений интерференции и дифракции света.

Цель работы: экспериментально изучить явление интерференции и дифракции.

Оборудование:

  • стаканы с раствором мыла;
  • кольцо проволочное с ручкой;
  • капроновая ткань;
  • компакт-диск;
  • лампа накаливания;
  • штангенциркуль;
  • две стеклянные пластины;
  • лезвие;
  • пинцет;
  • капроновая ткань.

Теоретическая часть

Интерференция – явление характерное для волн любой природы: механических, электромагнитных. Интерференция волн – сложение в пространстве двух (или нескольких) волн, при котором в разных его точках получается усиление или ослабление результирующей волны. Для образования устойчивой интерференционной картины необходимы когерентные (согласованные) источники волн. Когерентными называются волны, имеющие одинаковую частоту и постоянную разность фаз.

Условия максимумов Δd = ± kλ , условия минимумов, Δd = ± (2k + 1)λ/2 где k=0; ± 1; ± 2; ± 3;... (разность хода волн равна четному числу полуволн

Интерференционная картина – регулярное чередование областей повышенной и пониженной интенсивности света. Интерференция света – пространственное перераспределение энергии светового излучения при наложении двух или нескольких световых волн. Следовательно, в явлениях интерференции и дифракции света соблюдается закон сохранения энергии. В области интерференции световая энергия только перераспределяется, не превращаясь в другие виды энергии. Возрастание энергии в некоторых точках интерференционной картины относительно суммарной световой энергии компенсируется уменьшением её в других точках (суммарная световая энергия – это световая энергия двух световых пучков от независимых источников).
Светлые полоски соответствуют максимумам энергии, темные – минимумам.

Дифракция – явление отклонения волны от прямолинейного распространения при прохождении через малые отверстия и огибании волной малых препятствий. Условие проявления дифракции: d < λ, где d – размер препятствия, λ - длина волны. Размеры препятствий (отверстий) должны быть меньше или соизмеримы с длиной волны. Существование этого явления (дифракции) ограничивает область применения законов геометрической оптики и является причиной предела разрешающей способности оптических приборов. Дифракционная решетка – оптический прибор, представляющий собой периодическую структуру из большого числа регулярно расположенных элементов, на которых происходит дифракция света. Штрихи с определенным и постоянным для данной дифракционной решетки профилем повторяются через одинаковый промежуток d (период решетки). Способность дифракционной решетки раскладывать падающий на нее пучёк света по длинам волн является ее основным свойством. Различают отражательные и прозрачные дифракционные решетки. В современных приборах применяют в основном отражательные дифракционные решетки. Условие наблюдения дифракционного максимума: d sin(φ) = ± kλ

Указания к работе

1. Опустите проволочную рамку в мыльный раствор. Пронаблюдайте и зарисуйте интерференционную картину в мыльной пленке. При освещении пленки белым светом (от окна или лампы) возникает окрашивание светлых полос: вверху – синий цвет, внизу – в красный цвет. С помощью стеклянной трубки выдуйте мыльный пузырь. Пронаблюдайте за ним. При освещении его белым светом наблюдают образование цветных интерференционных колец. По мере уменьшения толщины пленки кольца, расширяясь, перемещаются вниз.

Ответьте на вопросы:

  1. Почему мыльные пузыри имеют радужную окраску?
  2. Какую форму имеют радужные полосы?
  3. Почему окраска пузыря все время меняется?

2. Тщательно протрите стеклянные пластинки, сложите их вместе и сожмите пальцами. Из-за неидеальности формы соприкасающихся поверхностей между пластинками образуются тончайшие воздушные пустоты, дающие яркие радужные кольцеобразные или замкнутые неправильной формы полосы. При изменении силы, сжимающей пластинки, расположение и форма полос изменяются как в отраженном, так и в проходящем свете. Зарисуйте увиденные вами картинки.

Ответьте на вопросы:

  1. Почему в отдельных местах соприкосновения пластин наблюдаются яркие радужные кольцеобразные или неправильной формы полосы?
  2. Почему с изменением нажима изменяются форма и расположение полученных интерференционных полос?

3. Положите горизонтально на уровне глаз компакт-диск. Что вы наблюдаете? Объясните наблюдаемые явления. Опишите интерференционную картину.

4. Посмотрите сквозь капроновую ткань на нить горящей лампы. Поворачивая ткань вокруг оси, добейтесь четкой дифракционной картины в виде двух скрещенных под прямым углом дифракционных полос. Зарисуйте наблюдаемый дифракционный крест.

5. Пронаблюдайте две дифракционные картины при рассмотрении нити горящей лампы через щель, образованную губками штангенциркуля (при ширине щели 0,05 мм и 0,8 мм). Опишите изменение характера интерференционной картины при плавном повороте штангенциркуля вокруг вертикальной оси (при ширине щели 0,8 мм). Этот опыт повторите с двумя лезвиями, прижав их друг к другу. Опишите характер интерференционной картины

Запишите выводы. Укажите, в каких из проделанных вами опытов наблюдалось явление интерференции? дифракции?

Цель работы : изучить характерные особенности интерференции и дифракции света.

Ход работы

1. Капроновая решетка

Мы изготовили очень простой прибор для наблюдения дифракции света в бытовых условиях. Для этого использовали рамочки для слайдов, кусочек очень тонкого капронового материала и клей “Момент”.

В результате у нас получилось очень качественная двухмерная дифракционная решетка.

Нити капрона расположены друг от друга на расстоянии порядка размеров длины световой волны. Следовательно, данная капроновая ткань дает достаточно четкую дифракционную картину. Причем, поскольку нити в пространстве пересекаются под прямым углом, то получается двухмерная решетка.

2. Нанесение молочного покрытия

При составлении молочного раствора одну чайную ложку молока разбавляют 4–5 ложками воды. Затем подготовленную в качестве подложки чистую стеклянную пластинку кладут на стол, наносят на ее верхнюю поверхность несколько капель раствора, размазывают его тонким слоем по всей поверхности и дают подсохнуть в течении нескольких минут. После этого пластинку ставят на ребро, сливая остатки раствора, и окончательно сушат еще несколько минут в наклонном положении.

3. Нанесение покрытия из ликоподия

На поверхность чистой пластинки наносят капельку машинного или растительного масла (можно крупицу жира, маргарина, сливочного масла или вазелина) размазывают тонким слоем и чистой тряпочкой аккуратно протирают смазанную поверхность.

Остающийся на ней тонкий слой жира играет роль клейкой основы. Насыпают на эту поверхность небольшое количество (щепотку) ликоподия, пластинку наклоняют градусов на 30 и, постукивая пальцем по краю, добиваются ссыпания порошка к ее основанию. В области ссыпания остается широкий след в виде достаточно однородного слоя ликоподия.

Изменяя наклон пластинки, повторяют эту процедуру несколько раз до тех пор, пока вся поверхность пластинки не окажется покрытой подобным слоем. После этого излишки порошка ссыпают, расположив пластинку вертикально и ударяя ее краем по столу или другому твердому предмету.

Сферические частицы ликоподия (споры плауна) отличаются постоянством диаметра. Такое покрытие, состоящее из огромного множества хаотически распределенных по поверхности прозрачной подложки непрозрачных шариков одинакового диаметра d, сходно с распределением интенсивности в картине дифракции от круглого отверстия.

Вывод:

Интерференция света наблюдается:

1) С помощью мыльных пленок на проволочном каркасе или обычных мыльных пузырей;

2) Специального прибора “кольца Ньютона”.

Наблюдение дифракция света:

I. Молочное покрытие и ликоподий представляют собой естественную дифракционную решетку, т. к. частички молока и споры ликоподия по своим габаритам близки к длине световой волны. Картина получается достаточно яркая и четкая, если посмотреть сквозь эти препараты на яркий источник света.

II. Дифракционная решетка – это лабораторный прибор с разрешающей способностью 1/200, позволяет пронаблюдать дифракцию света в белом и моносвете.

III. Если посмотреть на яркий источник света прищурившись сквозь собственные ресницы, то тоже можно наблюдать дифракцию.

IV. Перо птиц (самые тонкие ворсинки) Тоже можно использовать как дифракционную решетку, т. к. расстояние между ворсинками и их размеры соразмерны с длиной световой волны.

V. Лазерный диск представляет собой отражательную дифракционную решетку, бороздки на котором расположены настолько близко, и представляют собой преодолимое препятствие для световой волны.

VI. Капроновая решетка, которую мы изготовили специально для данной лабораторной работы, в силу тонкости ткани и близости расположения волокон представляет собой хорошую двухмерную дифракционную решетку.

Новое на сайте

>

Самое популярное