Домой Заболевания суставов Ковалентная химическая связь. Ковалентная связь: полярная, неполярная, механизмы ее появления

Ковалентная химическая связь. Ковалентная связь: полярная, неполярная, механизмы ее появления

Ковалентная химическая связь возникает между атомами с близкими или равными значениями электроотрицательностей. Предположим, что хлор и водород стремятся отнять электроны и принять структуру ближайшего благородного газа, значит ни один из них не отдаст электрон другому. Каким же способом они все таки соединяются? Все просто – они поделятся друг с другом, образуется общая электронная пара.

Теперь рассмотрим отличительные черты ковалентной связи.

В отличие от ионных соединений, молекулы ковалентных соединений удерживаются вместе за счет «межмолекулярных сил», которые намного слабее химических связей. В связи с этим, ковалентной связи характерна насыщаемость – образование ограниченного числа связей.

Известно, что атомные орбитали ориентированы в пространстве определенным образом, поэтому при образовании связи, перекрывание электронных облаков происходит в определенном направлении. Т.е. реализуется такое свойство ковалентной связи как направленность.

Если ковалентная связь в молекуле образована одинаковыми атомами или атомами с равной электроотрицательностью, то такая связь не имеет полярности, т.е электронная плотность распределяется симметрично. Называется она неполярной ковалентной связью (H 2 , Cl 2 , O 2 ). Связи могут быть как одинарными, так и двойными, тройными.

Если электроотрицательности атомов различаются, то при их соединении электронная плотность распределяется между атомами неравномерно и образуется ковалентная полярная связь (HCl, H 2 O, CO), кратность которой также может быть различной. При образовании данного типа связи, более электроотрицательный атом приобретает частичный отрицательный заряд, а атом с меньшей электроотрицательностью – частичный положительный заряд (δ- и δ+). Образуется электрический диполь, в котором заряды, противоположные по знаку, расположены на неком расстоянии друг от друга. В качестве меры полярности связи используют дипольный момент:

Полярность соединения тем более выражена, чем больше дипольный момент. Молекулы будут иметь неполярный характер, если дипольный момент равен нулю.

В связи с вышеперечисленными особенностями, можно заключить, что ковалентные соединения летучи, имеют низкие температуры плавления и кипения. Электрический ток не может проходить через эти соединения, следовательно, они плохие проводники и хорошие изоляторы. При подводе тепла, многие соединения с ковалентной связью, загораются. В большей части это углеводороды, а также оксиды, сульфиды, галогениды неметаллов и переходных металлов.

Категории ,

Ковалентная, ионная и металлическая – три основных типа химических связей.

Познакомимся подробнее с ковалентной химической связью . Рассмотрим механизм ее возникновения. В качестве примера возьмем образование молекулы водорода:

Сферически симметричное облако, образованное 1s-электроном, окружает ядро свободного атома водорода. Когда атомы сближаются до определенного расстояния, происходит частичное перекрывание их орбиталей (см. рис.), в результате чего появляется молекулярное двухэлектронное облако между центрами обоих ядер, которое обладает максимальной электронной плотностью в пространстве между ядрами. При увеличении же плотности отрицательного заряда происходит сильное возрастание сил притяжения между молекулярным облаком и ядрами.

Итак, мы видим, что ковалентная связь образуется путем перекрывания электронных облаков атомов, которое сопровождается выделением энергии. Если расстояние между ядрами у сблизившихся до касания атомов составляет 0,106 нм, тогда после перекрывания электронных облаков оно составит 0,074 нм. Чем больше перекрывание электронных орбиталей, тем прочнее химическая связь.

Ковалентной называется химическая связь, осуществляемая электронными парами . Соединения с ковалентной связью называют гомеополярными или атомными .

Существуют две разновидности ковалентной связи : полярная и неполярная .

При неполярной ковалентной связи образованное общей парой электронов электронное облако распределяется симметрично относительно ядер обоих атомов. В качестве примера могут выступать двухатомне молекулы, которые состоят из одного элемента: Cl 2 , N 2 , H 2 , F 2 , O 2 и другие, электронная пара в которых в принадлежит обоим атомам в одинаковой мере.

При полярной ковалентной связи электронное облако смещено к атому с большей относительной электроотрицательностью. Например молекулы летучих неорганических соединений таких как H 2 S, HCl, H 2 O и другие.

Образование молекулы HCl можно представить в следущем виде:

Т.к. относительная электроотрицательность атома хлора (2,83) больше, чем атома водорода (2,1), электронная пара смещается к атому хлора.

Помимо обменного механизма образования ковалентной связи – за счет перекрывания, также существует донорно-акцепторный механизм ее образования. Это механизм, при котором образование ковалентной связи происходит за счет двухэлектронного облака одного атома (донора) и свободной орбитали другого атома (акцептора). Давайте рассмотрим пример механизма образования аммония NH 4 + .В молекуле аммиака у атома азота есть двухэлектронное облако:

Ион водорода имеет свободную 1s-орбиталь, обозначим это как .

В процессе образования иона аммония двухэлектронное облако азота становится общим для атомов азота и водорода, это значит оно преобразуется в молекулярное электронное облако. Следовательно, появляется четвертая ковалентная связь. Можно представить процесс образования аммония такой схемой:

Заряд иона водорода рассредоточен между всеми атомами, а двухэлектронное облако, которое принадлежит азоту, становится общим с водородом.

Остались вопросы? Не знаете, как сделать домашнее задание?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Ковалентная связь (от латинского «со» совместно и «vales» имеющий силу) осуществляется за счет электронной пары, принадлежащей обоим атомам. Образуется между атомами неметаллов.

Электроотрицательность неметаллов довольно велика, так что при химическом взаимодействии двух атомов неметаллов полный перенос электронов от одного к другому (как в случае ) невозможен. В этом случае для выполнения необходимо объединение электронов.

В качестве примера обсудим взаимодействие атомов водорода и хлора:

H 1s 1 — один электрон

Cl 1s 2 2s 2 2 p 6 3 s 2 3 p 5 — семь электронов на внешнем уровне

Каждому из двух атомов недостает по одному электрону для того, чтобы иметь завершенную внешнюю электронную оболочку. И каждый из атомов выделяет „в общее пользование” по одному электрону. Тем самым правило октета оказывается выполненным. Лучше всего изобра­жать это с помощью формул Льюиса:

Образование ковалентной связи

Обобществленные электроны принадлежат теперь обоим атомам. Атом водорода имеет два электрона (свой собственный и обобществленный электрон атома хлора), а атом хлора - восемь электронов (свои плюс обобществленный электрон атома водорода). Эти два обобществленных электрона образуют ковалентную связь между атомами водорода и хло­ра. Образовавшаяся при связывании двух атомов частица называется молекулой.

Неполярная ковалентная связь

Ковалентная связь может образоваться и между двумя одинаковы­ми атомами. Например:

Эта схема объясняет, почему водород и хлор существуют в виде двухатомных молекул. Благодаря спариванию и обобществлению двух элек­тронов удается выполнить правило октета для обоих атомов.

Помимо одинарных связей может образовываться двойная или тройная ковалентная связь, как, например, в молекулах кислорода О 2 или азота N 2 . Атомы азота имеют по пять валентных электронов, следовательно, для завершения оболочки требуется еще по три электро­на. Это достигается обобществлением трех пар электронов, как показано ниже:

Ковалентные соединения — обычно газы, жидкости или сравнитель­но низкоплавкие твердые вещества. Одним из редких исключений явля­ется алмаз, который плавится выше 3 500 °С. Это объясняется строением алмаза, который представляет собой сплошную решетку ковалентно связанных атомов углерода, а не совокупность отдельных молекул. Фак­тически любой кристалл алмаза, независимо от его размера, представля­ет собой одну огромную молекулу.

Ковалентная связь возникает при объединении электронов двух атомов неметаллов. Возникшая при этом структура называется молекулой.

Полярная ковалентная связь

В большинстве случаев два ковалентно связанных атома имеют раз­ную электроотрицательность и обобществленные электроны не принад­лежат двум атомам в равной степени. Большую часть времени они нахо­дятся ближе к одному атому, чем к другому. В молекуле хлороводорода, например, электроны, образующие ковалентную связь, располагаются ближе к атому хлора, поскольку его электроотрицательность выше, чем у водорода. Однако разница в способности притягивать электроны не столь велика, чтобы произошел полный перенос электрона с атома водо­рода на атом хлора. Поэтому связь между атомами водорода и хлора можно рассматривать как нечто среднее между ионной связью (полный перенос электрона) и неполярной ковалентной связью (симмет­ричное расположение пары электронов между двумя атомами). Частич­ный заряд на атомах обозначается греческой буквой δ. Такая связь называется полярной ковалентной связью, а о молеку­ле хлороводорода говорят, что она полярна, т. е. имеет положительно заряженный конец (атом водорода) и отрицательно заряженный конец (атом хлора).


В таблице ниже перечислены основные типы связей и примеры веществ:


Обменный и донорно-акцепторный механизм образования ковалентной связи

1) Обменный механизм. Каждый атом дает по одному неспаренному электрону в общую электронную пару.

2) Донорно-акцепторный механизм. Один атом (донор) предоставляет электронную пару, а другой атом (акцептор) предоставляет для этой пары свободную орбиталь.


План лекции:

1. Понятие ковалентной связи.

2. Электроотрицательность.

3. Полярная и неполярная ковалентная связь.

Ковалентная связь образуется за счёт общих электронных пар, возникающих в оболочках связываемых атомов.

Она может быть образована атомами одного итого же элемента и тогда она неполярная; например, такая ковалентная связь существует в молекулах одноэлементных газов H 2 , O 2 , N 2 , Cl 2 и др.

Ковалентная связь может быть образована атомами разных элементов, сходных по химическому характеру, и тогда она полярная; например, такая ковалентная связь существует в молекулах H 2 O, NF 3 , CO 2 .

Неоходимо ввести понятие электроотрицательность.

Электроотрицательность – это способность атомов химического элемента оттягивать к себе общие электронные пары, участвующие в образовании химической связи.


ряд электроотрицательностей

Элементы с большей электроотрицательностью будут оттягивать общие электроны от элементов с меньшей электроотрицательностью.

Для наглядного изображения ковалентной связи в химических формулах используются точки (каждая точка отвечает валентному электрону, а также черта отвечает общей электронной паре).

Пример. Связи в молекуле Cl 2 можно изобразить так:

Такие записи формул равнозначны. Ковалентные связи обладают пространственной направленностью. В результате ковалентного связывания атомов образуются либо молекулы, либо атомные кристаллические решётки со строго определенным геометрическим расположением атомов. Каждому веществу соответствует своя структура.

С позиции теории Бора образование ковалентной связи объясняется тенденцией атомов преобразовывать свой внешний слой в октет (полное заполнение до 8 электронов).Оба атома представляют для образования ковалентной связи по одному неспаренному электрону, и оба электрона становятся общими.
Пример. Образование молекулы хлора.

Точками обозначены электроны. При расстановке следует соблюдать правило:электроны ставятся в определённой последовательности-слева, сверху, справа,снизу по одному, затем добавляют по одному, неспаренные электроны и принимают участие в образовании связи.

Новая электронная пара, возникшая из двух неспаренных электронов, становится общей для двух атомов хлора. Существует несколько способов образования ковалентных связей за счёт перекрывания электронных облаков.

σ – связь значительно прочнее π-связи, причём π-связь может быть только с σ-связью, За счёт этой связи образуются двойные и тройные кратные связи.

Полярные ковалентные связи образуются между атомами с разной электроотрицательностью.

За счёт смещения электронов от водорода к хлору атом хлора заряжается частично отрицательно, водорода-частично положительно.

Полярная и неполярная ковалентная связь

Если двухатомная молекула состоит из атомов одного элемента, то электронное облако распределяется в пространстве симметрично относительно ядер атомов. Такая ковалентная связь называется неполярной. Если ковалентная связь образуется между атомами различных элементов, то общее электронное облако смещено в сторону одного из атомов. В этом случае ковалентная связь является полярной. Для оценки способности атома притягивать к себе общую электронную пару используют величину электроотрицательности.

В результате образования полярной ковалентной связи более электроотрицательный атом приобретает частичный отрицательный заряд, а атом с меньшей электроотри-цательностью – частичный положительный заряд. Эти заряды принято называть эффективными зарядами атомов в молекуле. Они могут иметь дробную величину. Например, в молекуле HСl эффективный заряд равен 0,17e (где е – заряд электронаЗаряд электрона равен 1,602 . 10 -19 Кл.):

Система из двух равных по величине, но противоположных по знаку зарядов, расположенных на определенном расстоянии друг от друга, называется электрическим диполем. Очевидно, что полярная молекула является микроскопическим диполем. Хотя суммарный заряд диполя равен нулю, в окружающем его пространстве существует электрическое поле, напряженность которого пропорциональна дипольному моменту m:

В системе СИ дипольный момент измеряется в Кл×м, но обычно для полярных молекул в качестве единицы измерения используется дебай (единица названа в честь П. Дебая):

1 D = 3,33×10 –30 Кл×м

Дипольный момент служит количественной мерой полярности молекулы. Для многоатомных молекул дипольный момент представляет собой векторную сумму дипольных моментов химических связей. Поэтому, если молекула симметрична, то она может быть неполярной, даже если каждая из ее связей обладает значительным дипольным моментом. Например, в плоской молекуле BF 3 или в линейной молекуле BeCl 2 сумма дипольных моментов связей равна нулю:

Аналогично, нулевой дипольный момент имеют тетраэдрические молекулы CH 4 и CBr 4 . Однако, нарушение симметрии, например в молекуле BF 2 Cl, обусловливает дипольный момент, отличный от нуля.

Предельным случаем ковалентной полярной связи является ионная связь. Она образуется атомами, электроотрицательности которых значительно различаются. При образовании ионной связи происходит почти полный переход связующей электронной пары к одному из атомов, и образуются положительный и отрицательный ионы, удерживаемые вблизи друг друга электростатическими силами. Поскольку электростатическое притяжение к данному иону действует на любые ионы противоположного знака независимо от направления, ионная связь, в отличие от ковалентной, характеризуется ненаправленностью и ненасыщаемостью . Молекулы с наиболее выраженной ионной связью образуются из атомов типичных металлов и типичных неметаллов (NaCl, CsF и т.п.), т.е. когда различие в электроотрицательности атомов велико.

Далеко не последнюю роль на химическом уровне организации мира играет способ связи структурных частиц, соединения между собой. Подавляющее число простых веществ, а именно неметаллов, имеют ковалентный неполярный тип связи, за исключением Металлы в чистом виде имею особый способ связи, который реализуется с помощью обобществления свободных электронов в кристаллической решетке.

Виды и примеры которых будут указаны ниже, а точнее, локализация или частичное смещение этих связей к одному из участников связывания, объясняется именно электроотрицательной характеристикой того или иного элемента. Смещение происходит к тому атому, у которого она сильнее.

Ковалентная неполярная связь

«Формула» ковалентной неполярной связи проста - два атома одинаковой природы объединяют в совместную пару электроны своих валентных оболочек. Такая пара называется поделённой потому, что в равной степени принадлежит обоим участникам связывания. Именно благодаря обобществлению электронной плотности в виде пары электронов, атомы переходят в более стабильное состояние, так как завершают свой внешний электронный уровень, а «октет» (или «дуплет» в случае простого вещества водорода Н 2 , у него единственная s-орбиталь, для завершения которой нужно два электрона) - это состояние внешнего уровня, к которому стремятся все атомы, так как его заполнение соответствует состоянию с минимальной энергией.

Пример неполярной ковалентной связи есть в неорганике и, как бы странно это ни звучало, но и в органической химии тоже. Такой тип связи присущ всем простым веществам - неметаллам, кроме благородных газов, так как валентный уровень атома инертного газа уже завершен и имеет октет электронов, а значит, связывание с подобным себе для него не имеет смысла и даже менее энергетически выгодно. В органике неполярность встречается в отдельных молекулах определённой структуры и носит условный характер.

Ковалентная полярная связь

Пример неполярной ковалентной связи ограничивается несколькими молекулами простого вещества, в то время как соединений диполей, в которых электронная плотность частично смещена в сторону более электроотрицательного элемента, - подавляющее большинство. Любое соединение атомов с разной величиной электроотрицательности даёт полярную связь. В частности, связи в органике - это ковалентные полярные связи. Иногда ионные, неорганические оксиды также являются полярными, а в солях и кислотах преобладает ионный тип связывания.

Как крайний случай полярного связывания иногда рассматривают и ионный тип соединений. В случае если электроотрицательность одного из элементов значительно выше, чем у другого, электронная пара полностью сдвигается от центра связи к нему. Так происходит разделение на ионы. Тот, кто забирает электронную пару, превращается в анион и получает отрицательный заряд, а теряющий электрон - превращается в катион и становиться положительным.

Примеры неорганических веществ с ковалентным неполярным типом связи

Вещества с ковалентной неполярной связью - это, например, все бинарные молекулы газов: водород (Н - Н), кислород (О = О), азот (в его молекуле 2 атома связаны тройной связью (N ≡ N)); жидкостей и твёрдых веществ: хлора (Cl - Cl), фтор (F - F), бром (Br - Br), йод (I - I). А также сложные вещества, состоящие из атомов различных элементов, но с фактическим одинаковым значением электроотрицательности, например, гидрид фосфора - РН 3 .

Органика и неполярное связывание

Предельно ясно, что все сложные. Встаёт вопрос, как же в сложном веществе может быть неполярная связь? Ответ довольно прост, если немного логически поразмыслить. Если значения электроотрицательности связанных элементов различаются незначительно и не создают в соединении, такую связь можно считать неполярной. Именно такая ситуация с углеродом и водородом: все С - Н связи в органике считаются неполярными.

Пример неполярной ковалентной связи - молекула метана, простейшего Она состоит из одного атома углерода, который, согласно своей валентности, связан одинарными связями с четырьмя атомами водорода. По сути, молекула не является диполем, так как в ней нет локализации зарядов, в чем-то и за счёт тетраэдрического строения. Электронная плотность распределена равномерно.

Пример неполярной ковалентной связи есть и в более сложных органических соединениях. Реализуется он за счёт мезомерных эффектов, то есть последовательного оттягивания электронной плотности, которое быстро угасает по углеродной цепи. Так, в молекуле гексахлорэтана связь С - С неполярная за счёт равномерного оттягивания электронной плотности шестью атомами хлора.

Прочие типы связей

Кроме ковалентной связи, которая, кстати, может осуществляться и по донорно-акцепторному механизму, имеют место ионная, металлическая и водородная связи. Краткие характеристики предпоследних двух представлены выше.

Водородная связь - это межмолекулярное электростатическое взаимодействие, которое наблюдается, если в молекуле есть атом гидрогена и любой другой, имеющий неподелённые электронные пары. Этот тип связывания гораздо слабее, чем остальные, но за счёт того, что в веществе этих связей может образоваться очень много, вносит значительный вклад в свойства соединения.

Новое на сайте

>

Самое популярное