Домой Сахарный диабет Каково содержание кислорода в атмосфере. Атмосфера земли медленно теряет кислород

Каково содержание кислорода в атмосфере. Атмосфера земли медленно теряет кислород

Кислород играет очень большую роль в жизни нашей планеты. Он используется живыми организмами для дыхания, входит в состав органического вещества (белки, жиры, углеводы). Озоновый слой атмосферы (О 3) задерживает опасную для существования жизни солнечную радиацию.

Содержание кислорода в составе атмосферы Земли примерно равно 21%. Это второй по распространению газ в атмосфере после азота. В атмосфере он содержится в виде молекул О 2 . Однако в верхних слоях атмосферы происходит разложение кислорода на атомы (процесс диссоциации) и на высоте примерно 200 км отношение атомарного кислорода к молекулярному становится примерно 1:10.

В верхних слоях атмосферы Земли под воздействием солнечного излучения образуется озон (О 3). Озоновый слой атмосферы защищает живые организмы от действия губительного ультрафиолетового излучения.

Эволюция содержания кислорода в атмосфере Земли.

В самом начале развития Земли свободного кислорода в атмосфере было очень мало. Он возникал в верхних слоях атмосферы в процессе фотодиссоциации углекислого газа и воды. Но практически весь образовавшийся кислород расходовался на окисление других газов и поглощался земной корой.

На определенном этапе развития Земли ее углекислая атмосфера перешла в азотно-кислородную. Содержание кислорода в атмосфере стало стремительно расти с появлением в океане автотрофных фотосинтезирующих организмов. Увеличение кислорода в атмосфере привело к окислению многих компонентов биосферы. Сначала кислород в докембрийских морях поглощался закисным железом, но после того, как содержание растворенного железа в океанах значительно уменьшилось, кислород стал накапливаться в гидросфере , а затем и в атмосфере Земли.

Роль биохимических процессов живого вещества биосферы в образовании кислорода все возрастала. С появлением растительного покрова на материках наступил современный этап в развитии атмосферы Земли. В атмосфере Земли установилось постоянное содержание свободного кислорода.

В настоящее время количество кислорода в атмосфере Земли сбалансировано таким образом, что количество производимого кислорода равно количеству поглощаемого. Убыль кислорода в атмосфере в результате процессов дыхания, гниения и горения возмещается кислородом, выделяющимся при фотосинтезе.

Круговорот кислорода в природе.

Геохимический круговорот кислорода связывает газовую и жидкую оболочки с земной корой .

Его основные моменты:

  • выделение свободного кислорода при фотосинтезе,
  • окисление химических элементов,
  • поступление предельно окисленных соединений в глубокие зоны земной коры и их частичное восстановление, в том числе за счет соединений углерода,
  • вынос оксида углерода и воды на поверхность земной коры и
  • вовлечение их в реакцию фотосинтеза.

Рис. 1. Схема круговорота кислорода в несвязанном виде.


Это была статья "Кислород в составе атмосферы Земли – содержание в атмосфере 21%. ". Далее читайте: "Углекислый газ в атмосфере Земли. "

Статьи по теме "Атмосфера Земли":

  • Воздействие атмосферы Земли на организм человека с увеличением высоты.
  • Высота и границы атмосферы Земли .

Строение и состав атмосферы Земли, нужно сказать, не всегда были постоянными величинами в тот или иной период развития нашей планеты. Сегодня вертикальное строение этого элемента, имеющего общую «толщину» 1,5-2,0 тыс. км, представлено несколькими основными слоями, в том числе:

  1. Тропосферой.
  2. Тропопаузой.
  3. Стратосферой.
  4. Стратопаузой.
  5. Мезосферой и мезопаузой.
  6. Термосферой.
  7. Экзосферой.

Основные элементы атмосферы

Тропосфера представляет собой слой, в котором наблюдаются сильные вертикальные и горизонтальные движения, именно здесь формируется погода, осадочные явления, климатические условия. Она простирается на 7-8 километров от поверхности планеты почти повсеместно, за исключением полярных регионов (там - до 15 км). В тропосфере наблюдается постепенное понижение температуры, приблизительно на 6,4°С с каждым километром высоты. Этот показатель может отличаться для разных широт и времен года.

Состав атмосферы Земли в этой части представлен следующими элементами и их процентными долями:

Азот - около 78 процентов;

Кислород - почти 21 процент;

Аргон - около одного процента;

Углекислый газ - менее 0.05 %.

Единый состав до высоты 90 километров

Кроме того, здесь можно найти пыль, капельки воды, водяной пар, продукты горения, кристаллики льда, морские соли, множество аэрозольных частиц и др. Такой состав атмосферы Земли наблюдается приблизительно до девяноста километров высоты, поэтому воздух примерно одинаков по химическому составу, не только в тропосфере, но и в вышележащих слоях. Но там атмосфера имеет принципиально другие физические свойства. Слой же, который имеет общий химический состав, называют гомосферой.

Какие элементы еще входят в состав атмосферы Земли? В процентах (по объему, в сухом воздухе) здесь представлены такие газы как криптон (около 1.14 х 10 -4), ксенон (8.7 х 10 -7), водород (5.0 х 10 -5), метан (около 1.7 х 10 -4), закись азота (5.0 х 10 -5) и др. В процентах по массе из перечисленных компонентов больше всего закиси азота и водорода, далее следует гелий, криптон и пр.

Физические свойства разных атмосферных слоев

Физические свойства тропосферы тесно связаны с ее прилеганием к поверхности планеты. Отсюда отраженное солнечное тепло в форме инфракрасных лучей направляется обратно вверх, включая процессы теплопроводности и конвекции. Именно поэтому с удалением от земной поверхности падает температура. Такое явление наблюдается до высоты стратосферы (11-17 километров), потом температура становится практически неизменной до отметки 34-35 км, и далее идет опять рост температур до высот в 50 километров (верхняя граница стратосферы). Между стратосферой и тропосферой есть тонкий промежуточный слой тропопаузы (до 1-2 км), где наблюдаются постоянные температуры над экватором - около минус 70°С и ниже. Над полюсами же тропопауза «прогревается» летом до минус 45°С, зимой температуры здесь колеблются около отметки -65°С.

Газовый состав атмосферы Земли включает в себя такой важный элемент, как озон. Его относительно немного у поверхности (десять в минус шестой степени от процента), так как газ образуется под воздействием солнечных лучей из атомарного кислорода в верхних частях атмосферы. В частности, больше всего озона на высоте около 25 км, а весь «озоновый экран» расположен в областях от 7-8 км в области полюсов, от 18 км на экваторе и до пятидесяти километров в общем над поверхностью планеты.

Атмосфера защищает от солнечной радиации

Состав воздуха атмосферы Земли играет очень важную роль в сохранении жизни, так как отдельные химические элементы и композиции удачно ограничивают доступ солнечной радиации к земной поверхности и живущим на ней людям, животным, растениям. Например, молекулы водяного пара эффективно поглощают почти все диапазоны инфракрасного излучения, за исключением длин в интервале от 8 до 13 мкм. Озон же поглощает ультрафиолет вплоть до длины волн в 3100 А. Без его тонкого слоя (составит всего в среднем 3 мм, если его расположить на поверхности планеты) обитаемы могут быть только воды на глубине более 10 метров и подземные пещеры, куда не доходит солнечная радиация.

Ноль по Цельсию в стратопаузе

Между двумя следующими уровнями атмосферы, стратосферой и мезосферой, существует примечательный слой - стратопауза. Он приблизительно соответствует высоте озонных максимумов и здесь наблюдается относительно комфортная для человека температура - около 0°С. Выше стратопаузы, в мезосфере (начинается где-то на высоте 50 км и заканчивается на высоте 80-90 км), наблюдается опять же падение температур с увеличением расстояния от поверхности Земли (до минус 70-80°С). В мезосфере обычно полностью сгорают метеоры.

В термосфере - плюс 2000 К!

Химический состав атмосферы Земли в термосфере (начинается после мезопаузы с высот около 85-90 до 800 км) определяет возможность такого явления, как постепенный нагрев слоев весьма разреженного «воздуха» под воздействием солнечного излучения. В этой части «воздушного покрывала» планеты встречаются температуры от 200 до 2000 К, которые получаются в связи с ионизацией кислорода (выше 300 км находится атомарный кислород), а также рекомбинацией атомов кислорода в молекулы, сопровождающейся выделением большого количества тепла. Термосфера - это место возникновения полярных сияний.

Выше термосферы находится экзосфера - внешний слой атмосферы, из которого легкие и быстро перемещающиеся атомы водорода могут уходить в космическое пространство. Химический состав атмосферы Земли здесь представлен больше отдельными атомами кислорода в нижних слоях, атомами гелия в средних, и почти исключительно атомами водорода - в верхних. Здесь господствуют высокие температуры - около 3000 К и отсутствует атмосферное давление.

Как образовалась земная атмосфера?

Но, как уже упоминалось выше, такой состав атмосферы планета имела не всегда. Всего существует три концепции происхождения этого элемента. Первая гипотеза предполагает, что атмосфера была взята в процессе аккреции из протопланетного облака. Однако сегодня эта теория подвергается существенной критике, так как такая первичная атмосфера должна была быть разрушена солнечным «ветром» от светила в нашей планетной системе. Кроме того, предполагается, что летучие элементы не могли удержаться в зоне образования планет по типу земной группы из-за слишком высоких температур.

Состав первичной атмосферы Земли, как предполагает вторая гипотеза, мог быть сформирован за счет активной бомбардировки поверхности астероидами и кометами, которые прибыли из окрестностей Солнечной системы на ранних этапах развития. Подтвердить или опровергнуть эту концепцию достаточно сложно.

Эксперимент в ИДГ РАН

Самой правдоподобной представляется третья гипотеза, которая считает, что атмосфера появилась в результате выделения газов из мантии земной коры приблизительно 4 млрд. лет назад. Эту концепцию удалось проверить в ИДГ РАН в ходе эксперимента под названием «Царев 2», когда в вакууме был разогрет образец вещества метеорного происхождения. Тогда было зафиксировано выделение таких газов как Н 2 , СН 4 , СО, Н 2 О, N 2 и др. Поэтому ученые справедливо предположили, что химический состав первичной атмосферы Земли включал в себя водяной и углекислый газ, пары фтороводорода (HF), угарного газа (CO), сероводорода (H 2 S), соединений азота, водород, метан (СН 4), пары аммиака (NH 3), аргон и др. Водный пар из первичной атмосферы участвовал в образовании гидросферы, углекислый газ оказался в большей мере в связанном состоянии в органических веществах и горных породах, азот перешел в состав современного воздуха, а также опять в осадочные породы и органические вещества.

Состав первичной атмосферы Земли не позволил бы современным людям находиться в ней без дыхательных аппаратов, так как кислорода в требуемых количествах тогда не было. Этот элемент в значительных объемах появился полтора миллиарда лет назад, как полагают, в связи с развитием процесса фотосинтеза у сине-зеленых и других водорослей, которые являются древнейшими обитателями нашей планеты.

Минимум кислорода

На то, что состав атмосферы Земли изначально был почти бескислородным, указывает то, что в древнейших (катархейских) породах находят легкоокисляемый, но не окисленный графит (углерод). Впоследствии появились так называемые полосчатые железные руды, которые включали в себя прослойки обогащенных окислов железа, что означает появление на планете мощного источника кислорода в молекулярной форме. Но эти элементы попадались только периодически (возможно, те же водоросли или другие продуценты кислорода появились небольшими островками в бескислородной пустыне), в то время как остальной мир был анаэробным. В пользу последнего говорит то, что легко окисляемый пирит находили в виде гальки, обработанной течением без следов химических реакций. Так как текучие воды не могут быть плохо аэрированными, выработалась точка зрения, что атмосфера до начала кембрия содержала менее одного процента кислорода от сегодняшнего состава.

Революционное изменение состава воздуха

Приблизительно в середине протерозоя (1,8 млрд. лет назад) произошла «кислородная революция», когда мир перешел к аэробному дыханию, в ходе которого из одной молекулы питательного вещества (глюкоза) можно получать 38, а не две (как при анаэробном дыхании) единицы энергии. Состав атмосферы Земли, в части кислорода, стал превышать один процент от современного, стал возникать озоновый слой, защищающий организмы от радиации. Именно от нее «скрывались» под толстыми панцирями, к примеру, такие древние животные, как трилобиты. С тех пор и до нашего времени содержание основного «дыхательного» элемента постепенно и медленно возрастало, обеспечивая многообразие развития форм жизни на планете.

В отличие от горячих и холодных планет нашей Солнечной системы, на планете Земля существуют условия, которые дают возможность жизни в определенной форме. Одним из главных условий является состав атмосферы, который дает всему живому возможность свободно дышать и защищает от смертельного излучения, царящего в космосе.

Из чего состоит атмосфера

Атмосфера Земли состоит из множества газов. В основном который занимает 77 %. Газ, без которого немыслима жизнь на Земле, занимает гораздо меньший объем, содержание кислорода в воздухе равно 21 % от всего объема атмосферы. Последние 2 % - смесь различных газов, включая аргон, гелий, неон, криптон и другие.

Атмосфера Земли поднимается на высоту 8 тыс. км. Воздух, пригодный для дыхания, есть только в нижнем слое атмосферы, в тропосфере, достигающей на полюсах - 8 км, ввысь, а над экватором - 16 км. С увеличением высоты воздух становится более разреженным и тем больше ощутима нехватка кислорода. Чтобы рассмотреть, какое содержание кислорода в воздухе бывает на разной высоте, приведем пример. На пике Эвереста (высота 8848 м) воздух вмещает этого газа в 3 раза меньше, чем над уровнем моря. Поэтому покорители высокогорных вершин - альпинисты - могут подняться на его вершину только в кислородных масках.

Кислород - главное условие выживания на планете

В начале существования Земли воздух, который ее окружал, не имел этого газа в своем составе. Это вполне подходило для жизни простейших - одноклеточных молекул, которые плавали в океане. Им кислород не был нужен. Процесс начался примерно 2 млн лет назад, когда первые живые организмы в результате реакции фотосинтеза начали выделять малые дозы этого газа, полученного в результате химических реакций, сначала в океан, затем в атмосферу. Жизнь развилась на планете и приняла разнообразные формы, большинство из которых не дожили до наших времен. Некоторые организмы со временем приспособились к жизни с новым газом.

Они научились использовать его силу безопасно внутри клетки, где она выступала в роли электростанции, для того чтобы добывать энергию из еды. Такой способ использования кислорода называется дыханием, и мы это делаем ежесекундно. Именно дыхание дало возможность для появления более сложных организмов и людей. За миллионы лет содержание в воздухе кислорода взлетело до современного уровня - около 21 %. Накопление этого газа в атмосфере способствовало созданию озонового слоя на высоте 8-30 км от поверхности земли. Вместе с этим планета получила защиту от пагубного действия ультрафиолетовых лучей. Дальнейшая эволюция жизненных форм на воде и на суше стремительно возросла в результате увеличения фотосинтеза.

Анаэробная жизнь

Хотя некоторые организмы адаптировались к повышающемуся уровню выделяемого газа, многие из простейших форм жизни, которые существовали на Земле, исчезли. Другие организмы выжили, прячась от кислорода. Некоторые из них сегодня живут в корнях бобовых, используя азот из воздуха для построения аминокислот для растений. Смертельный организм ботулизма - еще один "беженец" от кислорода. Он спокойно выживает в вакуумных упаковках с консервированными продуктами.

Какой кислородный уровень оптимален для жизни

Преждевременно рожденные малыши, легкие которых еще не полностью раскрыты для дыхания, попадают в специальные инкубаторы. В них содержание кислорода в воздухе по объему выше, и вместо обычных 21 % здесь установлен его уровень 30-40 %. Малыши, имеющие серьезные проблемы дыхания, окружаются воздухом со стопроцентным уровнем кислорода, чтобы предотвратить повреждение детского мозга. Нахождение в таких обстоятельствах совершенствует кислородный режим тканей, пребывающих в состоянии гипоксии, приводит в норму их жизненные функции. Но его чрезмерное количество в воздухе так же опасно, как и недостаток. Чрезмерное количество кислорода в крови ребенка может привести к повреждению кровеносных сосудов в глазах и спровоцировать утрату зрения. Это показывает двойственность свойств газа. Мы должны дышать им, чтобы жить, но его избыток иногда может стать отравой для организма.

Процесс окисления

При соединении кислорода с водородом или углеродом, совершается реакция, именуемая окислением. Этот процесс заставляет органические молекулы, являющиеся основанием жизни, распадаться. В человеческом организме окисление проходит следующим образом. Эритроциты крови собирают кислород из легких и разносят его по всему телу. Происходит процесс разрушения молекул еды, которую мы употребляем. Этот процесс освобождает энергию, воду и оставляет диосксид углерода. Последний выводится клетками крови обратно в легкие, и мы выдыхаем его в воздух. Человек может задохнуться, если ему помешать дышать дольше, чем 5 минут.

Дыхание

Рассмотрим содержание кислорода во вдыхаемом воздухе. Атмосферный воздух, попадающий извне в легкие при вдыхании, именуется вдыхаемым, а воздух, который выходит наружу через дыхательную систему при выдохе, - выдыхаемым.

Он представляет собой смесь воздуха, заполнявшего альвеолы, с тем, который находится в дыхательных путях. Химический состав воздуха, который здоровый человек вдыхает и выдыхает в естественных условиях, практически не меняется и выражается такими цифрами.

Кислород - главная для жизни составляющая воздуха. Изменения количества этого газа в атмосфере невелики. Если у моря содержание в воздухе кислорода вмещает до 20,99 %, то даже в очень загрязненном воздухе индустриальных городов его уровень не падает ниже 20,5 %. Такие изменения не выявляют воздействия на человеческий организм. Физиологические нарушения проявляются тогда, когда процентное содержание кислорода в воздухе падает до 16-17 %. При этом наблюдается явная которая ведет к резкому падению жизнедеятельности, а при содержании в воздухе кислорода 7-8 % возможен летальный исход.

Атмосфера в разные эпохи

Состав атмосферы всегда оказывал воздействие на эволюцию. В разные геологические времена из-за природных катаклизмов наблюдались подъемы или падения уровня кислорода, и это влекло за собой изменение биосистемы. Примерно 300 миллионов лет назад содержание его в атмосфере поднялось до 35 %, при этом наблюдалось заселение планеты насекомыми гигантских размеров. Наибольшее вымирание живых существ в истории Земли случилось около 250 миллионов лет назад. Во время него более чем 90 % обитателей океана и 75 % жителей суши погибло. Одна из версий массового вымирания гласит, что виной тому оказалось низкое содержание в воздухе кислорода. Количество этого газа упало до 12 %, и это - в нижнем слое атмосферы до высоты 5300 метров. В нашу эпоху содержание кислорода в атмосферном воздухе доходит до 20,9 %, что на 0,7 % ниже, чем 800 тысяч лет назад. Эти цифры подтверждены учеными из Принстонского университета, которые исследовали пробы Гренландского и Атлантического льда, образовавшегося в то время. Замерзшая вода сберегла пузырьки воздуха, и этот факт помогает вычислить уровень кислорода в атмосфере.

Чему подчиняется уровень его в воздухе

Активное поглощение его из атмосферы может быть вызвано передвижением ледников. Отодвигаясь, они открывают гигантские площади органических пластов, потребляющих кислород. Еще одним поводом может быть остывание вод Мирового океана: его бактерии при пониженной температуре активнее поглощают кислород. Исследователи утверждают, что индустриальный скачок и вместе с ним сжигание огромного количества топлива особенного воздействия при этом не оказывают. Мировой океан охлаждается в течение 15 миллионов лет, и количество жизненно важного в атмосфере уменьшилось независимо от воздействия человека. Вероятно, на Земле совершаются некоторые природные процессы, ведущие к тому, что потребление кислорода становится выше его производства.

Воздействие человека на состав атмосферы

Поговорим о влиянии человека на состав воздуха. Тот уровень, который мы сегодня имеем, идеально подходит для живых существ, содержание кислорода в воздухе составляет 21 %. Баланс его и других газов определяется жизненным циклом в природе: животные выдыхают диоксид углерода, растения используют его и выделяют кислород.

Но не существует гарантии, что такой уровень будет постоянным всегда. Повышается количество диоксида углерода, выбрасываемого в атмосферу. Это происходит из-за использования топлива человечеством. А оно, как известно, образовалось из окаменелостей органического происхождения и в воздух попадает диоксид углерода. А тем временем самые большие растения нашей планеты, деревья, уничтожаются с нарастающей скоростью. За минуту исчезают километры леса. Это значит, что часть кислорода в воздухе постепенно падает и ученые уже сейчас бьют тревогу. Земная атмосфера - не безграничная кладовая и кислород в нее извне не поступает. Он все время вырабатывался вместе с развитием Земли. Нужно постоянно помнить, что этот газ производится растительностью в процессе фотосинтеза за счет потребления углекислого газа. И любое существенное уменьшение растительности в виде уничтожения лесов, неотвратимо снижает попадание кислорода в атмосферу, тем самым, нарушая его баланс.

24 сентября 2016 в 22:23

Атмосфера Земли медленно теряет кислород

  • Научно-популярное ,
  • Экология

Тропосфера - нижний очень тонкий слой атмосферы высотой 8-18 км, в котором сосредоточено 80% массы атмосферы Земли

Важность атмосферного O 2 для биологических и геохимических процессов на Земле чрезвычайно высока. Поэтому учёные давно изучают, как изменялось содержание кислорода в истории нашей планеты. Это можно понять из расчёта парциального давления O 2 и N 2 в общем атмосферном давлении.

Несмотря на долгую историю вопроса, у специалистов до сих пор нет единого мнения об изменении атмосферного давления на протяжении последних 500 млн лет. Расчёты отличаются до 0,2 атм (см. диаграмму внизу). Даже за последние несколько миллионов лет нет ясной картины, как именно менялось атмосферное давление, парциальное давление и, следовательно, концентрация O 2 .

Вопрос непростой, ведь кислород из атмосферы постоянно потребляют животные, растения и даже камни. Группа учёных из Принстонского университета прояснила этот вопрос, изучив концентрацию воздушных пузырьков в ледяных кернах Гренландии и Антарктиды .

Ледяной керн с глубины 1837 м с видимыми годовыми слоями

На сегодняшний день ледяные керны - самый надёжный и точный источник данных об атмосферном давлении. Максимальный возраст льда в кернах - 800 тыс. лет, поэтому исследования ограничены этим временным интервалом.


Добыча ледяных кернов на научной станции «Восток» в Антарктиде

Оказалось, что в течение этого времени с Земли происходит довольно стабильная утечка кислорода со скоростью примерно 8,4 промилле за миллион лет. В частности, за последние 800 000 лет в атмосфере стало примерно на 0,7% меньше кислорода.


На диаграмме слева показано, как отличаются результаты научного моделирования соотношения O 2 /N 2 в атмосфере и парциального давления. На диаграмме справа - изменение парциального давления по результатам измерения воздушных пузырьков в ледяных кернах за 800 тыс. лет

«Мы проделали эти измерения больше из интереса, чем для подтверждения теории, - один из авторов научной работы Дэниель Столпер (Daniel Stolper). - Мы не знали, что получится: будет кислород увеличиваться с годами, уменьшаться или оставаться на постоянном уровне».

Уменьшение количества кислорода в атмосфере происходит довольно медленно. Вероятно, в ближайшие миллионы лет оно не угрожает человеческой жизни. Но информация о природе таких циклов очень важна для науки. Нам нужно знать, под влиянием каких факторов происходят изменения. Эту информацию можно использовать, в том числе, при терраформировании Марса, когда люди начнут заселение Красной планеты. Вероятно, нам придётся повышать количество кислорода в марсианской атмосфере.

На Земле тоже не было кислорода в первые пару миллиардов лет. Согласно наиболее вероятной теории, примерно 2,4 млрд лет назад уровень кислорода резко подскочил благодаря активности цианобактерий , известных также как сине-зелёные водоросли. Этот период резкого изменения состава атмосферы с последующей перестройкой биосферы и глобальным гуронским оледенением в истории Земли известен как кислородная катастрофа .


Сине-зелёные водоросли - причина, по которой 2,4 млрд лет назад на Земле появился кислород в большом количестве и возникла более продвинутая жизнь

Такую же кислородную катастрофу можно устроить на Марсе.

Учёные ещё не пришли к единому мнению, почему атмосфера Земли медленно теряет кислород. Есть две гипотезы . Одна из них - это происходит из-за увеличения скорости эрозии, в результате которой из почвы извлекается больше горных пород, которые окисляются и связывают больше кислорода. Другая теория связана с изменением климата: за последние несколько миллионов лет температура немного снизилась, несмотря на резкий рост в последние десятилетия. Из-за снижения температуры могла инициироваться цепочка экологических реакций, в результате которой больше кислорода стало растворяться и связываться в Мировом океане.

Пока что всё это лишь гипотезы, которые следует проверить.

В данный момент атмосфера Земли содержит 78,09% азота, 20,95% кислорода, 0,93% аргона, 0,039% углекислого газа и небольшие примеси других газов. В ней также постоянно изменяется концентрация водяного пара, который считается одним из основных парниковых газов. На уровне океана концентрация H 2 O в атмосфере составляет около 1%, а в среднем - около 0,4%. Общая масса атмосферы - 5,5×10 18 кг, то есть 5,5 зеттаграммов или 5,5 петатонн.


Накопление кислорода в атмосфере Земли . Зелёный график - нижняя оценка уровня кислорода, красный - верхняя оценка. 1. 3,85-2,45 млрд лет назад. 2. 2,45-1,85 млрд лет назад: начало производства кислорода и поглощение его океаном и породами морского дна. 3. 1,85-0,85 млрд лет назад: окисление горных пород на суше. 4. 0,85-0,54 млрд лет назад: все горные породы на суше окислены, начинается накопление кислорода в атмосфере. 5. 0,54 млрд лет назад - настоящее время

Утечка кислорода из земной атмосферы происходит медленно. Но учёные подчёркивают, что в их исследовании нет данных по изменению уровня кислорода за последние 200 лет, после начала Индустриальной революции, когда люди начали активно окислять углеводороды из земных недр, получая энергию от этой химической реакции и связывая большое количество кислорода из атмосферы. «Мы потребляем кислород в тысячу раз активнее, чем раньше, - говорит Дэниель Столпер. - Человечество полностью замкнуло [кислородный] цикл, сжигая тысячи тонн углерода… Это ещё одно свидетельство, что совместными усилиями люди способны значительно ускорить естественные процессы на Земле».

Причина кислорода в атмосфере Земли и причина вулканизма на Земле – одна. Это собственное тепло планеты, генерируемое каждым атомом, в процессе метаболизма.


Причина вулканизма на Земле

Причина вулканизма на Земле – тепло, генерируемое всей массой планеты в процессе метаболизма. То есть, причина такая же, как и для Ио.

Моя оценка: Энергия Земли 0,2*10^15 Дж/сек (в соответствии с теорией).

Теплопроводность литосферных плит и океанического дна мала, чтобы отвести эту энергию. Поэтому, тепло отводится через вулканизм. Из 10 000 вулканов, зарегистрированных на Земле, большая часть подводные. Они нагревают океан. Меньшая часть надводные. Они нагревают атмосферу.


Разрушение воды

Вода океанов, контактирует с огромным количеством расплавленной магмы, извергаемой подводными вулканами. И от этого контакта разрушается на кислород и водород. Оба газа всплывают на поверхность. Лёгкий водород поднимается в верхние слои атмосферы и там соединяется с озоном, образуя воду. Вода конденсируется и видна как перистые облака на высоте 30 км (на фото). Осадками, вода опять выпадает на землю. А в атмосфере образуются «озоновые дыры». Часть водорода сдувается солнечным ветром и уносится в космос. Кислород тяжёлый, поэтому концентрируется у поверхности Земли. Именно этим кислородом мы все дышим!!!

Осознал это, посмотрев документальный фильм: «Водородная "бомба" под ногами и под нефтяной экономикой».


Причина кислорода в атмосфере Земли

Концентрация кислорода в атмосфере Земли обусловлена подводной вулканической активностью. А вулканическая активность обусловлена собственным теплом планеты, генерируемым в процессе метаболизма!!! Вот почему концентрация кислорода стабильна.

Растения, в процессе фотосинтеза тоже выделяют кислород. И тоже, путём разрушения молекул воды. СО2 и Н2 соединяются в углеводород, а молекула кислорода поступает в воздух.

Почему считаю, что не растения отвечают за наблюдаемую концентрацию кислорода в атмосфере Земли? Об этом, чуть ниже.


Процент кислорода в атмосфере, раньше

Ископаемые древние растения и животные имели очень крупные размеры. Размеры, которые нельзя достичь при современной концентрации кислорода в атмосфере. Кислорода было больше. И это логично вытекает из идеи разрушения «Древней планеты». Сразу по её разрушении, обнажились очень большие площади магмы, из-за сокращения размеров литосферной плиты. Вода океана охладила магму. Но разрушение воды было очень масштабным. В атмосферу поступало намного больше кислорода из океана. Да и сам океан был сильно пропитан кислородом, что способствовало росту морских животных до больших размеров. По мере охлаждения дна, сформировались новые донные плиты, ставшие теплоизолятором. И после этого, избыточное тепло стало прорываться на поверхность посредством вулканизма, на стыках тектонических плит.


Темпы разрушения Земного океана

Можно оценить время полного разрушения океанов Земли.

Потеря водорода происходит по причине сдувания его солнечным ветром, в космос. Темп выдувания водорода 10% от того, что находится в атмосфере –250 000 000 тонн/год. При таких темпах потери водорода, Земле грозит обезвоживание (по моей гипотезе, его происхождения из воды). Темп разрушения воды – 2,25 км3/год. На полное разрушение всех океанов Земли надо 645 миллионов лет.

Примечание.

1. Темп выдувания водорода 250 000 тонн/год. Информация из фильма: «Водородная "бомба" под ногами и под нефтяной экономикой» таблица на 7 минут 30 секунд.

2. Темп выдувания водорода 10% от того, что находится в атмосфере. Этот же фильм, озвучка на 45 минуте.

Предполагаю, что в таблице забыли нарисовать три ноля. Художник, делавший таблицу, забыл. Докладчик сказал верное число в форме пропорции.

Судьба Венеры

Что касается второго крупного обломка «Древней планеты» - Венеры. Ей досталось меньше воды океана и очень мало материковых плит (всего две = 10% её площади). Воды не хватило для того, чтобы остудить обнажённую магму. В результате, разложение воды привело к образованию огромного количества кислорода и водорода.

Поднимаясь вверх, часть водорода опять соединялась с кислородом и выпадала остывшими осадками. Но водород выдувался из атмосферы солнечным ветром очень интенсивно, так как планета оказалась ближе к Солнцу, чем Земля и её магнитное поле оказалось слабым.

Атмосфера Венеры стала очень кислородной. Кислород соединился с углеродом образовав СО2, из которой сейчас и состоит 96,5% атмосферы Венеры.

Собственное тепло, генерируемое материей Венеры - 0,117*10^15 Дж/сек (расчётная, по теории). Для того, чтобы отвести всё тепло, генерируемое материей Венеры и получаемое от Солнца, достаточно температуры поверхности -20С°.

Но Венере досталась более плотная, чем Земле, атмосфера из азота, что создало более выраженный парниковый эффект.

Объём доставшейся Венере азотной атмосферы легко посчитать. То, что есть сейчас, составляет 1,88*10^19 кг. Что в 4,9 раза больше, чем азота в земной атмосфере. Плюс тот азот, что превратился в углерод, за счёт солнечной радиации и, соединившись с кислородом, стал углекислым газом - 1,42*10^20 кг. Что в 36,85 раз больше, чем азота в земной атмосфере. Всего, в атмосфере Венеры, азота было в 41,75 раз больше, чем сейчас на Земле 1,61*10^20 кг.

Водород, от разрушенной воды, интенсивно выдувался в космос. Очень мощная атмосфера из СО2, закрыла планету от излучения тепла, как одеяло. Планета у поверхности очень горячая (464С°). Вода исчезла.

При таких же темпах потери водорода, как на Земле, Венера полностью потеряла бы океан за 189 миллионов лет!!! Но, темпы потери водорода на Венере были намного больше. Она потеряла свой океан меньше, чем за 4 000 000 лет.

Чуть меньше океанов (1/3 от земных), плотнее атмосфера из азота (в 42 раза больше земной), чуть меньше континентальных плит (в 3 раза меньше земных), чуть ближе к Солнцу (больше солнечный ветер), слабое магнитное поле – и совсем другая судьба!!!


Судьба Земли

Землю ожидает судьба Венеры!!!

Не в бесконечном будущем, а менее чем через 645 миллионов лет.


Эволюция

Вся история генетических форм жизни, как на Земле, так и на Древней планете, обусловлена водой.

Жизнь появилась не раньше воды.

Вулканизм обусловлен метаболизмом материи планеты, поэтому был всегда.

Если была вода и был вулканизм, значит, был кислород в атмосфере.

Если кислород в атмосфере был от самого зарождения условий для жизни, значит наше представление об эволюции генетических форм жизни – неверно!!! Мы неправильно представляем себе ход истории.


Проблема1: Темпы накопления кислорода.

Если принять темп разрушения воды 2,25 км3/год, то для заполнения атмосферы кислородом, в наблюдаемом сейчас объёме, понадобится 585 000 лет. С нуля.

Чтобы объяснить 4000 000 лет существования Земли, надо найти, куда девается кислород, чтобы сохранялась пропорция.

Или предположить, что темп выветривания водорода в космос был завышен в 4000 000 / 585 000 = 6,8 раза.
- Или предположить, что кислород связывается углеродом в углекислый газ, а затем планктоном, в карбонат кальция, который оседает мелом на дне мирового океана.
- Можно предположить, что некоторая часть водорода образуется из недр Земли, как и утверждается теорией Ларина Владимира Николаевича. Этот водород соединяется в атмосфере с кислородом и возвращается в состояние воды. Этим путём, количество воды на Земле прирастает на 2,25 км3/год взамен разрушенной. Количество воды и количество кислорода остаётся постоянным.


Проблема 2: Откуда берётся кислород?

Если предположить, что моя гипотеза образования кислорода из воды не верна, а весь водород, теряемый «выдуванием» приходит из недр и соединяется с кислородом в атмосфере, то темпы исчезновения кислорода в атмосфере должны быть такими, что за 585 000 лет, он полностью исчезнет. Раз кислород исчезает, надо искать причину его восстановления.

Фотосинтез разрушает воду, связывает водород и углекислый газ в углеводород и создаёт свободный кислород. То есть является источником кислорода. Но, для фотосинтеза нужен углекислый газ. Значит надо искать такой же масштабный источник углекислого газа. Превращение азота в углерод, даёт источник углекислого газа, но ведёт к убыли азота в атмосфере, что в итоге должно привести к истощению атмосферы Земли. Ещё проблема – объём синтезированных растениями углеводов. Они не должны разрушаться. Иначе при окислении, углеводы опять станут водой и углекислым газом. Этот углекислый газ надо куда-то утилизировать, чтобы объяснить его малую концентрацию в атмосфере. Таким источником утилизации является океанический планктон. Он связывает углекислый газ в карбонат кальция, и надолго выводит из круговорота веществ.


Истина где-то посередине.

Водород поднимается из недр. Часть водорода восстанавливает кислород из соединений и связывается в углеводород, образуя нефтепродукты. Освобождённый кислород выходит на поверхность вместе со свободным водородом, вулканической активностью. В атмосфере, кислород и водород соединяются в воду, служа её первоисточником. Такова природа появления воды на Древней планете.

Если водород, является причиной освобождения кислорода из соединений, то нефти должно быть столько, чтобы объяснить всю массу кислорода в атмосфере, то есть – порядка 1 000 000 км3.

Так же верно и то, что вода мирового океана, контактируя с раскалёнными недрами в зоне подводных вулканов, разрушается на кислород и водород. И именно этот кислород, разрушенной вулканами, воды, и является причиной свободного кислорода воздуха. Этот кислород связывается с углеродом, образовавшимся из азота в верхних слоях атмосферы, появляется углекислый газ. Углекислый газ согревает планету, как одеяло. Углекислый газ связывается морским планктоном с кальцием, образуя карбонат кальция (мел). Растения связывают углекислый газ с молекулой водорода, полученной расщеплением воды, синтезируя углеводы. Растения, как и планктон, очищают атмосферу Земли от углекислого газа, не позволяя перегреться, как это произошло на Венере.

Тепловой баланс планеты.

Чем больше углекислого газа, тем теплее планета. Тем интенсивнее растения разрушают воду, связывая СО2. Атмосфера обогащается кислородом, что приводит к ускорению синтеза нового углекислого газа. Повышение тепла мирового океана активизирует деятельность планктона, который связывает углекислый газ в мел и выводит из круговорота веществ. Планета остывает, освободившись от углекислого газа. Планете не даёт перегреться – планктон (Видеоцитата 2 м14 сек) !

Как долго это будет длиться?

Пока не «выгорит» весь азот из атмосферы, превратившись в мел.

Аналогично, если планете 6 миллионов лет, то азота в атмосфере Земли было в два раза больше. Земная атмосфера была в два раза плотнее, всего 6 миллионов лет назад!!!

Таблица: Количество воды и атмосферы из азота, сразу после разрушения ДПл.


По мере истощения азота атмосфера становится легче. Давление у поверхности будет ослабевать. Давление будет частично компенсироваться ростом объёма кислорода.

Наступит момент, когда источник углерода (азот) для углекислого газа закончится. Кислород нечем будет связывать. Процентное содержание кислорода в атмосфере значительно возрастёт. Что хорошо для дыхания животных. Животные будут процветать, некоторое время. Затем начнутся пожары из-за чрезмерной, пожароопасной концентрации кислорода. В атмосферу частично высвободится скопленный растениями углекислый газ. Этот газ свяжется планктоном в мел и выйдет из круговорота. Начнётся СО2 голод для растений. Из-за чего их биомасса сократится. За ней сократится биомасса животных. Это произойдёт раньше, чем через 6 миллионов лет. Сложно сказать, насколько, но ясно, что раньше. Океан будет существовать ещё 639 миллионов лет, но без жизни в нём.


Итоги

На полное разрушение океанов надо 645 миллионов лет.
На полное разрушение суши, эрозией, надо 15 миллионов лет.
На полное истощение азота в атмосфере, надо 6 миллионов лет.
Все расчёты показывают одно, жизнь на планете Земля – не вечна.
Условия для существования генетической жизни – уникальны и скоротечны.

Новое на сайте

>

Самое популярное