Домой Кольпит Энтропия растет а мы ничего не делая. Ненасытная энтропия

Энтропия растет а мы ничего не делая. Ненасытная энтропия

«Все процессы в мире происходят с увеличением энтропии» - эта расхожая формулировка превратила энтропию из научного термина в какое-то непреложное свидетельство обреченной борьбы человека с окружающим его беспорядком. Но что в оригинале скрывается за этой физической величиной? И как можно посчитать энтропию? «Теории и практики» попытались разобраться в этом вопросе и найти спасение от надвигающегося распада.

Термодинамика и «тепловая смерть»

Впервые термин «энтропия» в 1865 году ввел немецкий физик Рудольф Клаузиус. Тогда он имел узкое значение и использовался в качестве одной из величин для описания состояния термодинамических систем - то есть, физических систем, состоящих из большого количества частиц и способных обмениваться энергией и веществом с окружающей средой. Проблема заключалась в том, что до конца сформулировать, что именно характеризует энтропия, ученый не смог. К тому же, по предложенной им формуле можно было определить только изменение энтропии, а не ее абсолютное значение.

Упрощенно эту формулу можно записать как dS = dQ/T. Это означает, что разница в энтропии двух состояний термодинамической системы (dS) равна отношению количества тепла, затраченного на то, чтобы изменить первоначальное состояние (dQ), к температуре, при которой проходит изменение состояния (T). Например, чтобы растопить лед, нам требуется отдать ему некоторое количество тепла. Чтобы узнать, как изменилась энтропия в процессе таяния, нам нужно будет поделить это количество тепла (оно будет зависеть от массы льда) на температуру плавления (0 градусов по Цельсию = 273, 15 градусов по Кельвину. Отсчет идет от абсолютного нуля по Кельвину (- 273° С), поскольку при этой температуре энтропия любого вещества равна нулю). Так как обе величины положительны, при подсчете мы увидим, что энтропии стало больше. А если провести обратную операцию - заморозить воду (то есть, забрать у нее тепло), величина dQ будет отрицательной, а значит, и энтропии станет меньше.

Примерно в одно время с этой формулой появилась и формулировка второго закона термодинамики: «Энтропия изолированной системы не может уменьшаться». Выглядит похоже на популярную фразу, упомянутую в начале текста, но с двумя важными отличиями. Во-первых, вместо абстрактного «мира» используется понятие «изолированная система». Изолированной считается та система, которая не обменивается с окружающей средой ни веществом, ни энергией. Во-вторых, категорическое «увеличение» меняется на осторожное «не убывает» (для обратимых процессов в изолированной системе энтропия сохраняется неизменной, а для необратимых - возрастает).

За этими скучноватыми нюансами скрывается главное: второй закон термодинамики нельзя без оглядки применять ко всем явлениям и процессам нашего мира. Хороший тому пример привел сам Клаузиус: он считал, что энтропия Вселенной постоянно растет, а потому когда-нибудь неизбежно достигнет своего максимума - «тепловой смерти». Этакой физической нирваны, в которой не протекают уже никакие процессы. Клаузиус придерживался этой пессимистической гипотезы до самой смерти в 1888 году - на тот момент научные данные не позволяли ее опровергнуть. Но в 1920-х гг. американский астроном Эдвин Хаббл доказал, что Вселенная расширяется, а значит, ее

сложно назвать изолированной термодинамической системой. Поэтому современные физики к мрачным прогнозам Клаузиуса относятся вполне спокойно.

Энтропия как мера хаоса

Поскольку Клаузиус так и не смог сформулировать физический смысл энтропии, она оставалась абстрактным понятием до 1872 года - пока австрийский физик Людвиг Больцман не вывел новую формулу, позволяющий рассчитывать ее абсолютное значение. Она выглядит как S = k * ln W (где, S - энтропия, k - константа Больцмана, имеющая неизменное значение, W - статистический вес состояния). Благодаря этой формуле энтропия стала пониматься как мера упорядоченности системы.

Как это получилось? Статистический вес состояния - это число способов, которыми можно его реализовать. Представьте рабочий стол своего компьютера. Сколькими способами на нем можно навести относительный порядок? А полный беспорядок? Получается, что статистический вес «хаотичных» состояний гораздо больше, а, значит больше и их энтропия. Посмотреть подробный пример и рассчитать энтропию собственного рабочего стола можно .

В этом контексте новый смысл приобретает второй закон термодинамики: теперь процессы не могут самопроизвольно протекать в сторону увеличения порядка. Но и тут не стоит забывать про ограничения закона.

Иначе человечество уже давно было бы в рабстве у одноразовой посуды. Ведь каждый раз, когда мы моем тарелку или кружку, нам на помощь приходит простейшая самоорганизация. В составе всех моющих средств есть поверхно-активные вещества (ПАВ). Их молекулы составлены из двух частей: первая по своей природе стремится к контакту с водой, а другая его избегает.

При попадании в воду молекулы «Фэйри» самопроизвольно собираются в «шарики», которые обволакивают частички жира или грязи (внешняя поверхность шарика это те самые склонные к контакту с водой части ПАВ, а внутренняя, наросшая вокруг ядра из частички грязи - это части, которые контакта с водой избегают). Казалось бы, этот простой пример противоречит второму закону термодинамики. Бульон из разнообразных молекул самопроизвольно перешел в некое более упорядоченное состояние с меньшей энтропией. Разгадка снова проста: систему «Вода-грязная посуда после вечеринки», в которую посторонняя рука капнула моющего средства, сложно считать изолированной.

Черные дыры и живые существа

Со времен появления формулы Больцмана термин «энтропия» проник практически во

все области науки и оброс новыми парадоксами. Возьмем, к примеру астрофизику и пару «черная дыра - падающее в нее тело». Ее вполне можно считать изолированной системой, а значит, ее энтропия такой системы должна сохраняться. Но она бесследно исчезает в черной дыре - ведь оттуда не вырваться ни материи, ни излучению. Что же происходит с ней внутри черной дыры?

Некоторые специалисты теории струн утверждают, что эта энтропия превращается в энтропию черной дыры, которая представляет собой единую структуру, связанную из многих квантовых струн (это гипотетические физические объекты, крошечные многомерные структуры, колебания которых порождают все элементарные частицы, поля и прочую привычную физику). Впрочем, другие ученые предлагают менее экстравагантный ответ: пропавшая информация, все-таки возвращается в мир вместе с излучением, исходящим от черных дыр.

Еще один парадокс, идущий вразрез со вторым началом термодинамики - это существование и функционирование живых существ. Ведь даже живая клетка со всеми ее биослоями мембран, молекулами ДНК и уникальными белками - это высокоупорядоченная структура, не говоря уже о целом организме. За счет чего существует система с такой низкой энтропией?

Этим вопросом в своей книге «Что такое жизнь с точки зрения физики» задался знаменитый Эрвин Шредингер, создатель того самого мысленного эксперимента с котом: «Живой организм непрерывно увеличивает свою энтропию, или, иначе, производит положительную энтропию и, таким образом, приближается к опасному состоянию максимальной энтропии, представляющему собой смерть. Он может избежать этого состояния, то есть оставаться живым, только постоянно извлекая из окружающей его среды отрицательную энтропию. Отрицательная энтропия - это то, чем организм питается».

Точнее организм питается углеводами, белками и жирами. Высокоупорядоченными, часто длинными молекулами со сравнительно низкой энтропией. А взамен выделяет в окружающую среду уже гораздо более простые вещества с большей энтропией. Вот такое вечное противостояние с хаосом мира.

Когда я учился на первом курсе МВТУ им. Баумана, на занятиях по химии нам рассказали об энтропии . Это было потрясение! Впервые в жизни в естественнонаучной величине я увидел не столько научный, сколько философский и даже этический смысл.

Энтропия - это мера упорядоченности системы. Саму ее нельзя измерить, можно оценить лишь ее увеличение или уменьшение. Например, карандаши в коробке имеют меньшую энтропию, чем карандаши, разбросанные по столу. Кусок мела имеет меньшую энтропию, чем тот же кусок, растолченный в пыль. Книга с текстом имеет меньшую энтропию, чем то же количество чистой бумаги. Собранный кубик Рубика имеет меньшую энтропию, чем разобранный.

Самое интересное в энтропии то (не буду придерживаться строгой физичности для простоты объяснения сути), что в нашем мире она постоянно растет. Вселенная расширяется, рассеивает свое тепло, этот процесс необратим, он ведет к увелечению энтропии и, в пределе, - к тепловой смерти Вселенной. Если все будет продолжаться так, как идет сейчас, этот мир когда-то будет полностью уничтожен. Вот. Грустно.

Но этому процессу можно кое-что противопоставить. Когда растет дерево, оно организует материю и уменьшает энтропию. Когда человек пишет книгу, он уменьшает энтропию. Когда много людей строят город или живут по закону, они уменьшают энтропию. Любая организующая деятельность уменьшает энтропию и, как следствие, противостоит разрушению мира. Я бы сказал больше: сознательная организующая, созидательная деятельность уменьшает энтропию. Хорошо организованное мышление уменьшает энтропию. Таким образом, у нас есть, что противопоставить тепловой смерти Вселенной. Я говорю об этом вполне серьезно, понимая, что мы не единственные существа в этом мире, способные мыслить и сознательно созидать.

Когда я это понял, я стал придерживаться правила уменьшения энтропии . Этого правила нет в физике или химии, оно имеет чисто этическую природу. Суть его в том, что в результате твоей деятельности энтропия должна уменьшаться. Или, другими словами, ты не должен увеличивать энтропию мира, в котором живешь. Это простое правило имеет следующие аспекты:
- давать миру больше, чем брать у него
- оставлять после себя больший порядок, чем был до тебя
- никогда не держать ум пустым, праздным (пустой ум увеличивает энтропию)
- стараться доводить до конца начатые проекты
- стараться как можно меньше требовать от других, но больше - от себя
- не иметь долгов любого плана
- стараться устранять любой беспорядок, с которым сталкиваешься
- и т. п. - продолжать можно долго

Сразу скажу, что мне самому далеко не всегда удается следовать этому правилу. Но я стараюсь.

Представьте, что вы взяли коробку с пазлом и высыпали все кусочки мозаики на стол. В теории кусочки могут упасть на свои места так, что картинка сразу сложится целиком. Но в жизни так никогда не бывает. Почему?

Потому что шансы на это ничтожно малы, ведь каждый кусочек пазла должен упасть только одним определённым образом, чтобы картина сложилась. С точки зрения математики, вероятность, что это произойдёт случайно, минимальна.

Что такое энтропия

jamesclear.com

Энтропия - это мера неупорядоченности. И она всегда увеличивается со временем. Всё естественным образом стремится к беспорядку. Здания разрушаются. Машины ржавеют. Люди стареют. Даже горы постепенно рассыпаются.

Это правило, известное как второе начало термодинамики , - один из фундаментальных законов нашей Вселенной. Оно гласит, что в изолированной системе энтропия остаётся неизменной или увеличивается (но никогда не уменьшается).

Но не стоит впадать в панику, есть и хорошие новости. Мы можем сопротивляться силам энтропии. Мы можем собрать рассыпавшийся пазл. Прополоть заросший сад. Убраться в захламлённой комнате. Организовать разрозненных людей в сплочённую команду.

Так как Вселенная стремится к беспорядку, нам приходится затрачивать энергию, чтобы создать в своей жизни стабильность и упорядоченность.

Чтобы , нужны забота и внимание. Чтобы дом был в хорошем состоянии, его нужно ремонтировать и содержать в чистоте. Для успеха команды необходимы общение и сотрудничество. Если не прилагать усилий, всё будет стремиться к распаду.

Этот вывод - что беспорядок со временем всегда увеличивается, и мы можем противостоять этому, затрачивая энергию, - открывает главную цель жизни. Мы должны прилагать усилия, чтобы создавать порядок, который сможет устоять перед неумолимым напором энтропии.

Как энтропия проявляется в нашей жизни

С помощью энтропии можно объяснить многие непонятные и удивительные факты, например:

Почему наша жизнь так необыкновенна

Представьте человеческий организм. Атомы, из которых состоит тело, могли бы сложиться практически в бесконечное количество вариантов и не создать никакой формы жизни. C точки зрения математики, вероятность нашего существования очень мала. И всё-таки мы существуем.

Во Вселенной, где всем заправляет энтропия, наличие жизни с такой чёткой устойчивой организацией поразительно.

Почему нам нравятся искусство и красота

С помощью энтропии можно объяснить, почему искусство и красота кажутся нам такими эстетически привлекательными. Художник создаёт особую форму порядка и симметрии, какую Вселенная, скорее всего, никогда не породила бы самостоятельно. Число красивых комбинаций гораздо меньше общего количества всех комбинаций. Красота - редкость во Вселенной, полной беспорядка. Поэтому симметричное лицо редко и красиво, ведь несимметричных вариантов несравнимо больше.

Почему идеальные для себя условия нужно не найти, а создать

У каждого из нас свои таланты, навыки и интересы. Но общество и культура, в которых мы живём, не создавались специально под нас. Помня об энтропии, подумайте, каковы шансы, что условия, в которых вы выросли, идеальны для раскрытия ваших талантов?

Крайне маловероятно, что жизнь создаст для вас ситуацию, идеально подходящую под ваши способности. Скорее всего, вы окажетесь в положении, не совсем соответствующем вашим навыкам и потребностям.

Мы обычно описываем такое состояние, как «не в своей тарелке», «не в своей стихии». Естественно, в таких условиях гораздо сложнее , принести пользу, победить. Зная это, мы должны сами создавать для себя идеальные условия жизни.

Сложности в жизни возникают не потому, что планеты так выстроились, и не потому, что какие-то высшие силы сговорились против вас. Это просто действует закон энтропии. Состояний беспорядка гораздо больше, чем упорядоченных. Учитывая всё это, удивительно не то, что в жизни есть проблемы, а то, что мы можем их разрешать.

Это определяющий для меня текст. Определяющий то, как я понимаю один из основных вопросов мироздания. Даже два.

Вопрос первый: Чем живое отличается от мёртвого?

Для того, чтобы отличить живое от мёртвого, я пользуюсь вторым законом термодинамики. Согласно которому, в замкнутой системе (отстутсвует обмен энергией и материей по границе системы) энтропия (мера измерения хаоса, беспорядка, случайного и равномерного перемешивания) не уменьшается со временем. Остаётся неизменной или увеличивается. И вообще, процесс увеличения энтропии (уменьшения упорядоченности) довольно самопроизвольный.

А если к нему добавить немного энергии, то порой становится быстрым и практически необратимым. Наглядная иллюстрация к вышесказанному - крылатое выражение "фарш невозможно провернуть назад".

И вот системы, которые увеличивают свою энтропию при поступлении в них энергии - они мёртвые.
Живые же системы характеризуется удивительной способностью использовать поступающую в систему энергию для уменьшения своей энтропии. А иногда и не только своей, но и окружающего их мертвого пространства.

Так, мачеха, смешавшая для Золушки горох с золой, является в этой истории безусловно мёртвой. А Золушка (и в особенности мышка), перебирающая горох от золы - безусловно живая.

И по этой логике человек является венцом творения не потому, что он умный, трудится или что-то ещё. А потому что он лучше всех остальных живых существ преобразует энергию в упорядоченность. Потому что он лучше всех борется с энтропией не только внутри себя (строя собственный организм), но и вокруг себя. Потому что человек умеет распространять созданную им упорядоченность очень далеко вокруг себя.

По этой же логике становится довольно очевидным смысл технологического прогресса, который некоторые (например экологи) ругают, а многие просто сомневаются в его необходимости. Так вот, во-первых, технологический прогресс позволяет человеку управлять всё большей энергией для борьбы с энтропией. Во-вторых, технологический прогресс позволяет человеку эффективнее испольовать энергию для борьбы с энтропией. Другими словами, технологический прогресс является одной из ключевых форм проявления жизни человека. Если мы откажемся от технологического прогресса - мы умрём. Это ровно то, что делает нас живыми. Именно технологический прогресс делает нас всё более и более живыми.

По этой же логике становится очевидным необходимость постоянного поиска новых источников энергии. Нефть, газ и уголь когда-то закончатся - а человечеству жизненно нужна энергия. Атом, термояд и солнце - на мой взгляд первые кандидаты.

По этой же логике, будущее человечества неразрывно связано с космосом. Для начала в рамках хотя бы солнечной системы. Если у человечества не будет космоса - у человечества не будет и будущего. Во-первых, солнце - это (пока ещё) неисчерпаемый источник энергии на среднесрочную перспективу (ближайшие десять тысяч лет). Во-вторых, любая форма жизни генерирует отходы, и человек не исключение. Эти отходы надо куда-то складировать, и бесконечный космос - отличное место для такого склада.

И второй важнейший вопрос мироздания. В чём смысл жизни? Смысл лично моей жизни в том, чтобы бороться с энтропией вокруг себя.

Upd: Смысл жизни Антона Буслова.

Новое на сайте

>

Самое популярное