Домой Связки Рациональная дробь.

Рациональная дробь.

Любое дробное выражение (п. 48) можно записать в виде , где Р и Q - рациональные выражения, причем Q обязательно содержит переменные. Такую дробь - называют рациональной дробью.

Примеры рациональных дробей:

Основное свойство дроби выражается тождеством справедливым при условиях здесь - целое рациональное выражение. Это значит, что числитель и знаменатель рациональной дроби можно умножить или разделить на одно и то же отличное от нуля число, одночлен или многочлен.

Например, свойство дроби может быть использовано для перемены знаков у членов дроби. Если числитель и знаменатель дроби - умножить на -1, получим Таким образом, значение дроби не изменится, если одновременно изменить знаки у числителя и знаменателя. Если же изменить знак только у числителя или только у знаменателя, то и дробь изменит свои знак:

Например,

60. Сокращение рациональных дробей.

Сократить дробь - это значит разделить числитель и знаменатель дроби на общий множитель. Возможность такого сокращения обусловлена основным свойством дроби.

Для того чтобы сократить рациональную дробь, нужно числитель и знаменатель разложить на множители. Если окажется, что числитель и знаменатель имеют общие множители, то дробь можно сократить. Если общих множителей нет, то преобразование дроби посредством сокращения невозможно.

Пример. Сократить дробь

Решение. Имеем

Сокращение дроби выполнено при условии .

61. Приведение рациональных дробей к общему знаменателю.

Общим знаменателем нескольких рациональных дробей называется целое рациональное выражение, которое делится на знаменатель каждой дроби (см. п. 54).

Например, общим знаменателем дробей и служит многочлен так как он делится и на и на и многочлен и многочлен и многочлен и т. д. Обычно берут такой общий знаменатель, что любой другой общий знаменатель делится на Еыбранный. Такой простейший знаменатель называют иногда наименьшим общим знаменателем.

В рассмотренном выше примере общий знаменатель равен Имеем

Приведение данных дробей к общему знаменателю достигнуто путем умножения числителя и знаменателя первой дроби на 2. а числителя и знаменателя второй дроби на Многочлены называются дополнительными множителями соответственно для первой и второй дроби. Дополнительный множитель для данной дроби равен частному от деления общего знаменателя на знаменатель данной дроби.

Чтобы несколько рациональных дробей привести к общему знаменателю, нужно:

1) разложить знаменатель каждой дроби на множители;

2) составить общий знаменатель, включив в него в качестве сомножителей все множители полученных в п. 1) разложений; если некоторый множитель имеется в нескольких разложениях, то он берется с показателем степени, равным наибольшему из имеющихся;

3) найтн дополнительные множители для каждой из дробей (для этого общий знаменатель делят на знаменатель дроби);

4) домножив числитель и знаменатель каждой дроби на дополнительный множитель, привести дробн к общему знаменателю.

Пример. Привести к общему знаменателю дроби

Решение. Разложим знаменатели на множители:

В общий знаменатель надо включить следующие множители: и наименьшее общее кратное чисел 12, 18, 24, т. е. . Значит, общий знаменатель имеет вид

Дополнительные множители: для первой дроби для второй для третьей Значит, получаем:

62. Сложение и вычитание рациональных дробей.

Сумма двух (и вообще любого конечного числа) рациональных дробей с одинаковыми знаменателями тождественно равна дроби с тем же знаменателем и с числителем, равным сумме числителей складываемых дробей:

Аналогично обстоит дело в случае вычитания дробей с одинаковыми знаменателями:

Пример 1. Упростить выражение

Решение.

Для сложения или вычитания рациональных дробей с разными знаменателями нужно прежде всего привести дроби к общему знаменателю, а затем выполнить операции над полученными дробями с одинаковыми знаменателями.

Пример 2. Упростить выражение

Решение. Имеем

63. Умножение и деление рациональных дробей.

Произведение двух (и вообще любого конечного числа) рациональных дробей тождественно равно дроби, числитель которой равен произведению числителей, а знаменатель - произведению знаменателей перемножаемых дробей:

Частное от деления двух рациональных дробей тождественно равно дроби, числитель которой равен произведению числителя первой дроби на знаменатель второй дроби, а знаменатель - произведению внаменателя первой дроби на числитель второй дроби:

Сформулированные правила умножения и деления распространяются и на случай умножения или деления на многочлен: достаточно записать этот, многочлен в виде дроби со знаменателем 1.

Учитывая возможность сокращения рациональной дроби, полученной в результате умножения или деления рациональных дробей, обычно стремятся до выполнения этих операций разложить на множители числители и знаменатели исходных дробей.

Пример 1. Выполнить умножение

Решение. Имеем

Использовав правило умножения дробей, получаем:

Пример 2. Выполнить деление

Решение. Имеем

Использовав правило деления, получаем:

64. Возведение рациональной дроби в целую степень.

Чтобы возвести рациональную дробь - в натуральную степень , нужно возвести в эту степень отдельно числитель и знаменатель дроби; первое выражение - числитель, а второе выражение - знаменатель результата:

Пример 1. Преобразовать в дробь степень 3.

Решение Решение.

При возведении дроби в целую отрицательную степень используется тождество справедливое при всех значениях переменных, при которых .

Пример 2. Преобразовать в дробь выражение

65. Преобразование рациональных выражений.

Преобразование любого рационального выражения сводится к сложению, вычитанию, умножению и делению рациональных дробей, а также к возведению дроби в натуральную степень. Всякое рациональное выражение можно преобразовать в дробь, числитель и знаменатель которой - целые рациональные выражения; в этом, как правило, состоит цель тождественных преобразований рациональных выражений.

Пример. Упростить выражение

66. Простейшие преобразования арифметических корней (радикалов).

При преобразовании арифметических корией используются их свойства (см. п. 35).

Рассмотрим несколько примеров на применение свойств арифметических корней для простейших преобразований радикалов. При этом все переменные будем считать принимающими только неотрицательные значения.

Пример 1. Извлечь корень из произведения

Решение. Применив свойство 1°, получим:

Пример 2. Вынести множитель из-под знака корня

Решение.

Такое преобразование называется вынесением множителя из-под знака корня. Цель преобразования - упростить подкоренное выражение.

Пример 3. Упростить .

Решение. По свойству 3° имеем Обычно стараются подкоренное выражение упростить, для чего выносят множители за знак кория. Имеем

Пример 4. Упростить

Решение. Преобразуем выражение, внеся множитель под знак корня: По свойству 4° имеем

Пример 5. Упростить

Решение. По свойству 5° мы имеем право показатель корня и показатель степени подкоренного выражения разделить на одно и то же натуральное число. Если в рассматриваемом, примере разделить указанные показатели на 3, то получим .

Пример 6. Упростить выражения:

Решение, а) По свойству 1° получаем, что для перемножения корней одной и той же степени достаточно перемножить подкоренные выражения и из полученного результата извлечь корень той же степени. Значит,

б) Прежде всего мы должны привести радикалы к одному показателю. Согласно свойству 5° мы можем показатель корня показатель степени подкоренного выражения умножить на одно и то же натуральное число. Поэтому Далее имеем теперь в полученном результате раз делив показатели корня и степени подкоренного выражения На 3, получим .

Она имеет вид

где P(x) и Q(x) некоторые многочлены.

Различают правильные и неправильные рациональные дроби, по аналогии с обычными числовыми дробями. Рациональная дробь называется правильной, если порядок знаменателя больше порядка числителя, и неправильной, если наоборот.

Любую неправильную рациональную дробь можно преобразовать в сумму некоторого многочлена и правильной рациональной дроби

Любую рациональную дробь многочленов с вещественными коэффициентами можно представить как сумму рациональных дробей, знаменателями которых являются выражения (x a ) k (a - вещественный корень Q(x)) либо (x 2 + p x + q ) k (где x 2 + p x + q не имеет действительных корней), причём степени k не больше кратности соответствующих корней в многочлене Q(x). На основании этого утверждения основана теорема об интегрируемости рациональной дроби. Согласно ей, любая рациональная дробь может быть интегрирована в элементарных функциях, что делает класс рациональных дробей весьма важным в математическом анализе.

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Рациональная дробь" в других словарях:

    Рациональная функция это дробь, числителем и знаменателем которой являются многочлены. Она имеет вид где, многочлены от любого числа переменных. Частным случаем являются рациональные функции одного переменного: , где… … Википедия

    У этого термина существуют и другие значения, см. Дробь. 8 / 13 числитель числитель знаменатель знаменатель Две записи одной дроби Дробь в математике число, состоящее из одной или нескольких частей… … Википедия

    В Викисловаре есть статья «дробь» Наименование символа «⁄» (другое, распространённое по большей части в английском языке, название символа солидус (англ.), или слэш), например, в номерах домов. Так номер дома «5/17» читается «пять… … Википедия

    1) Р. ф. функция w=R(z), где R(z) рациональное выражение от z, т. е. выражение, полученное из независимого переменного z и нек рого конечного набора чисел (действительных или комплексных) посредством конечного числа арифметич. действий. Р. ф.… … Математическая энциклопедия

    Четверти Рациональное число (лат. ratio отношение, деление, дробь) число, представляемое обыкновенной дробью, где m целое число, а n натуральное число. При этом число m называется числителем, а число n знаменателем дроби. Таку … Википедия

    Четверти Рациональное число (лат. ratio отношение, деление, дробь) число, представляемое обыкновенной дробью, где m целое число, а n натуральное число. При этом число m называется числителем, а число n знаменателем дроби. Таку … Википедия

    У этого термина существуют и другие значения, см. Дробь. Наипростейшей дробью ой степени называется рациональная функция вида где принимает натуральные значения, а точки, являющиеся полюсами функции, не обязательно геометрически различны.… … Википедия

    Число, выражаемое рациональной дробью. Формальная теория Р. ч. строится с помощью пар целых чисел. Р а ц и о н а л ь н о й д р о б ь ю наз. упорядоченная пара (а, b)целых чисел а и b, у к рой b№0. Две рациональные дроби и наз. э к в и в а л е н … Математическая энциклопедия

    Четверти Рациональное число (лат. ratio отношение, деление, дробь) число, представляемое обыкновенной дробью, где m целое число, а n натуральное число. При этом число m называется числителем, а число n знаменателем дроби. Таку … Википедия

Запиши в тетрадь тему урока

"Рациональные дроби".

Что это такое?
Это алгебраические выражения, которые содержат деление на выражение с переменными.

Например:
- дробное выражение.

Целое, потому, что оно равно , т. е. целому выражению с рациональными коэффициентами.

Целые и дробные выражения называются рациональными выражениями.

Вот с ними нам и предстоит работать в дальнейшем!

Целое выражение имеет смысл при любых значениях переменных, а вот дробное... делить-то на 0 нельзя!

Например:
определено при всех значениях переменной а и при всех значениях b, кроме b=3.

При каких значениях переменной выражение
?

Запомни:
Для любых значений а, b и с, где и , верно равенство

Если мы домножим дробь на число (т. е. умножим числитель и знаменатель дроби на одно и тоже число), то получаем равную дробь, но уже с другим знаменателем.

Если делим числитель и знаменатель на одно и тоже число, то сокращаем дробь.
Например:
1) Приведем дробь к дроби со знаменателем 35у3 .
Сначала поделим новый знаменатель 35у3 на старый 7у и получим дополнительный множитель 5у2 .
А потом умножим числитель и знаменатель на этот дополнительный множитель:
.

2) Cократим дробь .
Решение:

Запомни:
Чтобы сократить дробь надо числитель и знаменатель разложить на множители и затем поделить их на равный множитель, т.е. сократить.

Для разложения выражения на множители существует несколько методов.
Нам с тобой пока знакомы два из них:
1 метод
Вынесение за скобку общего множителя.
2 метод
Применение формул сокращенного умножения.

Первый и самый простой способ разложения на множители -
вынесение общего множителя за скобку.

Ac + bc = (a + b)c

Пример 1: 5ab2c3 - 10a2b3c + 15a3bc2 = 5abc(bc2 - 2ab2 + 3a2c)

Правило:

Если все члены многочлена имеют общий множитель (или несколько общих множителей), то этот множитель (эти множители) можно вынести за скобку,
при этом каждое слагаемое делим на выражение, которое выносим за скобку: 5ab2c3: 5abc = bc2 , - 10a2b3c: 5abc = - 2ab2 и, наконец, 15a3bc2: 5abc = 3a2c (следите за знаками!!!)

И надо помнить - за скобку выносится степень с меньшим показателем.

Самостоятельно:
Вынесите общий множитель за скобку

Проверь:

Иногда все члены алгебраического выражения не имею общего множителя, но в отдельных группах слагаемых он есть, например,

ах + ay + bx + by.

Этот многочлен можно разложить на множители, соединяя его члены в отдельные группы

(ax + bx) + (ay + by) = x(a + b) + y(a + b) = (x + y)(a + b).

Пример:

Применяя метод группировки слагаемых разложите выражение на множители
3x + xy2 - x2y - 3y

Решение:
3x + xy2 - x2y - 3y = 3(x - y) + xy(y -x) = 3(x - y) - xy(x -y) = (3 - xy)(x - y).

Потренируемся еще:
1) a3 - ab - a2b + a2 ,
2) ab2 - b2y - ax + xy + b2 - x .

Решение:
1) a3 - ab - a2b + a2 = a3 - a2b - ab + a2 = a2(a - b) + a(a - b)= (a2+ a)(a - b) = a(a +1)(a - b),
2) ab2 - b2y - ax + xy + b2 - x = b2(a - y + 1) - x(a - y + 1) = (b2 - x)(a - y + 1).

А теперь о 2-м методе.
Если слагаемые алгебраического выражения не имеют повторяющихся множителей, то можно попытаться применить формулы сокращенного умножения...

Примеры
а) Разность квадратов:
0,49х4 - 121y2 = (0,7x2)2 - (11y)2 = (0,7x2 - 11y)(0,7x2 + 11y),

Б) Разность кубов:
1 - 27с3 = 13 - (3с)3 = (1 - 3с)(1 + 3с + 9с2),

В) Квадрат разности:
4a2 - 12ab + 9b2 = (2a)2 - 22a 3b + (3b)2 = (2a - 3b)2 или (2a - 3b)(2a - 3b),

Г) Куб разности:
27x6 - 27x4y + 9x2y2 - y3 = (3x2)3 - 3(3x2)2y + 3(3x2)y2 - y3 = (3x2 - y)3 или (3x2 - y)(3x2 - y)(3x2 - y) т.е. три равных множителя!

Алгоритм:
- сначала "подгоняем внешний вид выражения" под возможную для применения формулу...
- если получилось - действуем далее как она (формула) того требует...
- если не получилось, то начинаем "примерять" другую формулу...
- и так пока не получится разложить выражение на произведение множителей!

Начнём с некоторых определений. Многочленом n-й степени (или n-го порядка) будем именовать выражение вида $P_n(x)=\sum\limits_{i=0}^{n}a_{i}x^{n-i}=a_{0}x^{n}+a_{1}x^{n-1}+a_{2}x^{n-2}+\ldots+a_{n-1}x+a_n$. Например, выражение $4x^{14}+87x^2+4x-11$ есть многочлен, степень которого равна $14$. Его можно обозначить так: $P_{14}(x)=4x^{14}+87x^2+4x-11$.

Отношение двух многочленов $\frac{P_n(x)}{Q_m(x)}$ называется рациональной функцией или рациональной дробью . Если более точно, то это рациональная функция одной переменной (т.е. переменной $x$).

Рациональная дробь называется правильной , если $n < m$, т.е. если степень многочлена, стоящего в числителе, меньше степени многочлена, стоящего в знаменателе. В противном случае (если $n ≥ m$) дробь называется неправильной .

Пример №1

Указать, какие из приведённых ниже дробей являются рациональными. Если дробь является рациональной, то выяснить, правильная она или нет.

  1. $\frac{3x^2+5\sin x-4}{2x+5}$;
  2. $\frac{5x^2+3x-8}{11x^9+25x^2-4}$;
  3. $\frac{(2x^3+8x+4)(8x^4+5x^3+x+145)^9(5x^7+x^6+9x^5+3)}{(5x+4)(3x^2+9)^{15}(15x^{10}+9x-1)}$;
  4. $\frac{3}{(5x^6+4x+19)^4}$.

1) Данная дробь не является рациональной, поскольку содержит $\sin x$. Рациональная дробь этого не допускает.

2) Мы имеем отношение двух многочленов: $5x^2+3x-8$ и $11x^9+25x^2-4$. Следовательно, согласно определению, выражение $\frac{5x^2+3x-8}{11x^9+25x^2-4}$ есть рациональная дробь. Так как степень многочлена в числителе равна $2$, а степень многочлена в знаменателе равна $9$, то данная дробь является правильной (ибо $2 < 9$).

3) И в числителе, и в знаменателе данной дроби расположены многочлены (разложенные на множители). Нам совершенно неважно, в какой форме представлены многочлены числителя и знаменателя: разложены они на множители или нет. Так как мы имеем отношение двух многочленов, то согласно определению выражение $\frac{(2x^3+8x+4)(8x^4+5x^3+x+145)^9(5x^7+x^6+9x^5+3)}{(5x+4)(3x^2+9)^{15}(15x^{10}+9x-1)}$ есть рациональная дробь.

Дабы ответить на вопрос о том, является ли данная дробь правильной, следует определить степени многочленов в числителе и знаменателе. Начнём с числителя, т.е. с выражения $(2x^3+8x+4)(8x^4+5x^3+x+145)^9(5x^7+x^6+9x^5+3)$. Для определения степени этого многочлена можно, конечно, раскрыть скобки. Однако разумно поступить гораздо проще, ибо нас интересует лишь наибольшая степень переменной $x$. Выберем из каждой скобки переменную $x$ в наибольшей степени. Из скобки $(2x^3+8x+4)$ возьмём $x^3$, из скобки $(8x^4+5x^3+x+9)^9$ возьмём $(x^4)^9=x^{4\cdot9}=x^{36}$, а из скобки $(5x^7+x^6+9x^5+3)$ выберем $x^7$. Тогда после раскрытия скобок наибольшая степень переменной $x$ будет такой:

$$ x^3\cdot x^{36}\cdot x^7=x^{3+36+7}=x^{46}. $$

Степень многочлена, расположенного в числителе, равна $46$. Теперь обратимся к знаменателю, т.е. к выражению $(5x+4)(3x^2+9)^{15}(15x^{10}+9x-1)$. Степень этого многочлена определяется так же, как и для числителя, т.е.

$$ x\cdot (x^2)^{15}\cdot x^{10}=x^{1+30+10}=x^{41}. $$

В знаменателе расположен многочлен 41-й степени. Так как степень многочлена в числителе (т.е. 46) не меньше степени многочлена в знаменателе (т.е. 41), то рациональная дробь $\frac{(2x^3+8x+4)(8x^4+5x^3+x+145)^9(5x^7+x^6+9x^5+3)}{(5x+4)(3x^2+9)^{15}(15x^{10}+9x-1)}$ является неправильной.

4) В числителе дроби $\frac{3}{(5x^6+4x+19)^4}$ стоит число $3$, т.е. многочлен нулевой степени. Формально числитель можно записать так: $3x^0=3\cdot1=3$. В знаменателе имеем многочлен, степень которого равна $6\cdot 4=24$. Отношение двух многочленов есть рациональная дробь. Так как $0 < 24$, то данная дробь является правильной.

Ответ : 1) дробь не является рациональной; 2) рациональная дробь (правильная); 3) рациональная дробь (неправильная); 4) рациональная дробь (правильная).

Теперь перейдём к понятию элементарных дробей (их ещё именуют простейшими рациональными дробями). Существуют четыре типа элементарных рациональных дробей:

  1. $\frac{A}{x-a}$;
  2. $\frac{A}{(x-a)^n}$ ($n=2,3,4,\ldots$);
  3. $\frac{Mx+N}{x^2+px+q}$ ($p^2-4q < 0$);
  4. $\frac{Mx+N}{(x^2+px+q)^n}$ ($p^2-4q < 0$; $n=2,3,4,\ldots$).

Примечание (желательное для более полного понимания текста): показать\скрыть

Зачем нужно условие $p^2-4q < 0$ в дробях третьего и четвертого типов? Рассмотрим квадратное уравнение $x^2+px+q=0$. Дискриминант этого уравнения $D=p^2-4q$. По сути, условие $p^2-4q < 0$ означает, что $D < 0$. Если $D < 0$, то уравнение $x^2+px+q=0$ не имеет действительных корней. Т.е. выражение $x^2+px+q$ неразложимо на множители. Именно эта неразложимость нас и интересует.

Например, для выражения $x^2+5x+10$ получим: $p^2-4q=5^2-4\cdot 10=-15$. Так как $p^2-4q=-15 < 0$, то выражение $x^2+5x+10$ нельзя разложить на множители.

Кстати сказать, для этой проверки вовсе не обязательно, чтобы коэффициент перед $x^2$ равнялся 1. Например, для $5x^2+7x-3=0$ получим: $D=7^2-4\cdot 5 \cdot (-3)=109$. Так как $D > 0$, то выражение $5x^2+7x-3$ разложимо на множители.

Задача состоит в следующем: заданную правильную рациональную дробь представить в виде суммы элементарных рациональных дробей. Решению этой задачи и посвящён материал, изложенный на данной странице. Для начала нужно убедиться, что выполнено следующее условие: многочлен в знаменателе правильной рациональной дроби разложен на множители таким образом, что оное разложение содержит лишь скобки вида $(x-a)^n$ или $(x^2+px+q)^n$ ($p^2-4q < 0$).Грубо говоря, это требование означает необходимость максимального разложения многочлена в знаменателе, т.е. чтобы дальнейшее разложение было невозможно. Только если это условие выполнено, то можно применять такую схему:

  1. Каждой скобке вида $(x-a)$, расположенной в знаменателе, соответствует дробь $\frac{A}{x-a}$.
  2. Каждой скобке вида $(x-a)^n$ ($n=2,3,4,\ldots$), расположенной в знаменателе, соответствует сумма из $n$ дробей: $\frac{A_1}{x-a}+\frac{A_2}{(x-a)^2}+\frac{A_3}{(x-a)^3}+\ldots+\frac{A_n}{(x-a)^n}$.
  3. Каждой скобке вида $(x^2+px+q)$ ($p^2-4q < 0$), расположенной в знаменателе, соответствует дробь $\frac{Cx+D}{x^2+px+q}$.
  4. Каждой скобке вида $(x^2+px+q)^n$ ($p^2-4q < 0$; $n=2,3,4,\ldots$), расположенной в знаменателе, соответствует сумма из $n$ дробей: $\frac{C_1x+D_1}{x^2+px+q}+\frac{C_2x+D_2}{(x^2+px+q)^2}+\frac{C_3x+D_3}{(x^2+px+q)^3}+\ldots+\frac{C_nx+D_n}{(x^2+px+q)^n}$.

Если же дробь неправильная, то перед применением вышеизложенной схемы следует разбить её на сумму целой части (многочлен) и правильной рациональной дроби. Как именно это делается, разберём далее (см. пример №2 пункт 3). Пару слов насчёт буквенных обозначений в числителях (т.е. $A$, $A_1$, $C_2$ и тому подобные). Буквы можно использовать любые - на свой вкус. Важно лишь, чтобы эти буквы были различными во всех элементарных дробях. Чтобы найти значения этих параметров применяют метод неопределённых коэффициентов или метод подстановки частных значений (см. примеры №3, №4 и №5).

Пример №2

Разложить заданные рациональные дроби на элементарные (без нахождения параметров):

  1. $\frac{5x^4-10x^3+x^2-9}{(x-5)(x+2)^4 (x^2+3x+10)(x^2+11)^5}$;
  2. $\frac{x^2+10}{(x-2)^3(x^3-8)(3x+5)(3x^2-x-10)}$;
  3. $\frac{3x^5-5x^4+10x^3-16x^2-7x+22}{x^3-2x^2+4x-8}$.

1) Имеем рациональную дробь. В числителе этой дроби расположен многочлен 4-й степени, а в знаменателе многочлен, степень которого равна $17$ (как определить эту степень детально пояснено в пункте №3 примера №1). Так как степень многочлена в числителе меньше степени многочлена в знаменателе, то данная дробь является правильной. Обратимся к наменателю этой дроби. Начнём со скобок $(x-5)$ и $(x+2)^4$, которые полностью подпадают под вид $(x-a)^n$. Кроме того, имеются ещё и скобки $(x^2+3x+10)$ и $(x^2+11)^5$. Выражение $(x^2+3x+10)$ имеет вид $(x^2+px+q)^n$, где $p=3$; $q=10$, $n=1$. Так как $p^2-4q=9-40=-31 < 0$, то данную скобку больше нельзя разложить на множители. Обратимся ко второй скобке, т.е. $(x^2+11)^5$. Это тоже скобка вида $(x^2+px+q)^n$, но на сей раз $p=0$, $q=11$, $n=5$. Так как $p^2-4q=0-121=-121 < 0$, то данную скобку больше нельзя разложить на множители. Итак, мы имеем следующий вывод: многочлен в знаменателе разложен на множители таким образом, что оное разложение содержит лишь скобки вида $(x-a)^n$ или $(x^2+px+q)^n$ ($p^2-4q < 0$). Теперь можно переходить и к элементарным дробям. Мы будем применять правила , изложенные выше. Согласно правилу скобке $(x-5)$ будет соответствовать дробь $\frac{A}{x-5}$. Это можно записать так:

$$ \frac{5x^4-10x^3+x^2-9}{(x-5)(x+2)^4 (x^2+3x+10)(x^2+11)^5}=\frac{A}{x-5}+\ldots $$

Полученный результат можно записать так:

$$ 3x^5-5x^4+10x^3-16x^2-7x+22=(x^3-2x^2+4x-8)(3x^2+x)+4x^2+x+22. $$

Тогда дробь $\frac{3x^5-5x^4+10x^3-16x^2-7x+22}{x^3-2x^2+4x-8}$ представима в иной форме:

$$ \frac{3x^5-5x^4+10x^3-16x^2-7x+22}{x^3-2x^2+4x-8}=\frac{(x^3-2x^2+4x-8)(3x^2+x)+4x^2+x+22}{x^3-2x^2+4x-8}=\\ =\frac{(x^3-2x^2+4x-8)(3x^2+x)}{x^3-2x^2+4x-8}+\frac{4x^2+x+22}{x^3-2x^2+4x-8}=\\ =3x^2+x+\frac{4x^2+x+22}{x^3-2x^2+4x-8}. $$

Дробь $\frac{4x^2+x+22}{x^3-2x^2+4x-8}$ является правильной рациональной дробью, ибо степень многочлена в числителе (т.е. 2) меньше степени многочлена в знаменателе (т.е. 3). Теперь обратимся к знаменателю данной дроби. В знаменателе расположен многочлен, который нужно разложить на множители. Иногда для разложения на множители полезна схема Горнера , но в нашем случае проще обойтись стандартным "школьным" методом группировки слагаемых:

$$ x^3-2x^2+4x-8=x^2\cdot(x-2)+4\cdot(x-2)=(x-2)\cdot(x^2+4);\\ 3x^2+x+\frac{4x^2+x+22}{x^3-2x^2+4x-8}=3x^2+x+\frac{4x^2+x+22}{(x-2)\cdot(x^2+4)} $$

Применяя те же методы, что и в предыдущих пунктах, получим:

$$ \frac{4x^2+x+22}{(x-2)\cdot(x^2+4)}=\frac{A}{x-2}+\frac{Cx+D}{x^2+4} $$

Итак, окончательно имеем:

$$ \frac{3x^5-5x^4+10x^3-16x^2-7x+22}{x^3-2x^2+4x-8}=3x^2+x+\frac{A}{x-2}+\frac{Cx+D}{x^2+4} $$

Продолжение этой темы будет рассмотрено во второй части.

Новое на сайте

>

Самое популярное