Домой Лечение суставов Изучение объектов Солнечной системы космическими аппаратами: астероиды. Интересные факты о космических кораблях и исследованиях планет

Изучение объектов Солнечной системы космическими аппаратами: астероиды. Интересные факты о космических кораблях и исследованиях планет

Успешные миссии

Венера

Успешные миссии

Текущие миссии

Луна

Успешные миссии

  • Клементина - 25 января1994 года. Цель - картографирование и наблюдение Луны в различных диапазонах: видимом, УФ, ИК; лазерная альтиметрия и гравиметрия. Впервые была составлена глобальная карта элементного состава Луны, были обнаружены большие запасы льда на её южном полюсе.
  • Lunar Prospector - 7 января1998 года. Был уточнён возможный объём льда на южном полюсе Луны, его содержание в грунте оценили в 1-10 %, ещё более сильный сигнал указывает на наличие льда на северном полюсе. На обратной стороне Луны магнитометром были обнаружены сравнительно мощные локальные магнитые поля - 40 нТл, которые сформировали 2 небольшие магнитосферы диаметром около 200 км. По возмущениям в движении аппарата было обнаружено 7 новых масконов. Была проведена первая глобальная спектрометрическая съёмка в гамма-лучах, по итогам которой были составлены карты распределения титана, железа, алюминия, калия, кальция, кремния, магния, кислорода, урана, редкоземельных элементов и фосфора, и создана модель гравитационного поля Луны с гармониками до 100-го порядка, что позволяет очень точно рассчитывать орбиту спутников Луны.
  • Смарт-1 - 27 сентября2003 года. Аппарат создавался как экспериментальная АМС для отработки перспективных технологий, в первую очередь - электрореактивной двигательной установки для будущих миссий к Меркурию и Солнцу.
  • Кагуя - 14 сентября2007 года. Полученные данные дали возможность составить топографическую карту Луны с разрешением около 15 км. При помощи вспомогательного спутника «Окина» удалось составить карту распределении сил тяжести на обратной стороне Луны. Также полученные данные позволили сделать выводы о затухании вулканической активности Луны 2,84 миллиарда лет назад.
  • Чанъэ-1 - 24 октября2007 года. Планировалось, что аппарат выполнит несколько задач: построение трёхмерной топографической карты Луны - для научных целей и для определения места посадок будущих аппаратов; составление карт распределения химических элементов типа титана и железа (необходимы для оценки возможности промышленной разработки месторождений); оценка глубинного распределения элементов с помощью микроволнового излучения - поможет уточнить как распределяется гелий-3 и велико ли его содержание; изучение среды между Землёй и Луной, например, «хвостовой» области магнитосферы Земли, плазмы в солнечном ветре и т. д.
  • Чандраян-1 - 22 октября2008 года. В число основных целей запуска «Чандраян-1» входит поиск полезных ископаемых и запасов льда в полярных регионах Луны, а также составление трёхмерной карты поверхности. Часть программы - запуск ударного зонда. Он был запущен с окололунной орбиты и в течение 25 минут достиг поверхности Луны, совершив жёсткую посадку. Выбросы лунной породы на месте падения модуля будут проанализированы орбитальным аппаратом. Данные, полученные при жёсткой посадке ударного зонда, будут использованы для мягкой посадки будущего индийского лунохода, доставка которого на Луну запланирована в ходе полёта следующего зонда «Чандраян-2».
  • Lunar Crater Observation and Sensing Satellite - 18 июня 2009 года. От полёта LCROSS ожидалось получить окончательные сведения о наличии водяного льда на южном полюсе луны, который мог бы сыграть важную роль для будущих пилотируемых экспедиций на Луну. 9 октября 2009 года в 11:31:19 UTC в районе кратераКабеус упал разгонный блок «Центавр». В результате падения выброшено облако из газа и пыли. LCROSS пролетел сквозь выброшенное облако, анализируя вещество, поднятое со дна кратера и упал в тот же кратер в 11:35:45 UTC, успев передать на Землю результаты своих исследований. С лунной орбиты за падением следил зонд «LRO», с околоземной - космический телескоп Хаббл и европейский спутник «Odin». С Земли - крупные обсерватории.
  • Gravity Recovery and Interior Laboratory - 10 сентября 2011 года. Программа изучения гравитационного поля и внутреннего строения Луны, реконструкции её тепловой истории.
  • - 4 сентября 2013 год. После завершения миссии 17 апреля2014 годаLADEE столкнулся с поверхностью Луны


2 января 1959 года советская космическая ракета впервые в истории достигла второй космической скорости, необходимой для межпланетных полетов, и вывела на лунную траекторию автоматическую-межпланетную станцию «Луна-1». Это событие положило начало «лунной гонки» между двумя сверхдержавами - СССР и США.

«Луна-1»


2 января 1959 года СССР осуществил пуск ракеты-носителя «Восток-Л», которая вывела на лунную траекторию автоматическую межпланетную станцию «Луна-1». АМС пролетела на расстоянии 6 тыс. км. от лунной поверхности и вышла на гелиоцентрическую орбиту. Целью полёта было достижение «Луной-1» поверхности Луны. Вся бортовая аппаратура работала корректно, но в циклограмму полёта закралась ошибка, и АМП на поверхность Луны не попала. На результативности бортовых экспериментов это не отразилось. В ходе полёта «Луны-1» удалось зарегистрировать внешний радиационный пояс Земли, впервые измерить параметры солнечного ветра, установить отсутствие у Луны магнитного поля и провести эксперимент по созданию искусственной кометы. К тому же «Луна-1» стала космическим аппаратом, который сумел достичь второй космической скорости, преодолел земное притяжение и стал искусственным спутником Солнца.

«Пионер-4»


3 марта 1959 с космодрома на мысе Канаверал был запущен американский космический аппарат «Пионер-4», который первым совершил облёт Луны. На его борту были установлены счётчик Гейгера и фотоэлектрический сенсор для фотографирования лунной поверхности. Космический аппарат пролетел на расстоянии 60 тыс. километров от Луны на скорости 7,230 км/с. На протяжении 82 часов «Пионер-4» передавал на Землю данные о радиационной обстановке: в лунных окрестностях радиации обнаружено не было. «Пионер-4» стал первым американским космическим аппаратом, которому удалось преодолеть земное притяжение.

«Луна-2»


12 сентября 1959 года с космодрома Байконур стартовала автоматическая межпланетная станция «Луна-2», которая стала первой в мире станцией, достигшей поверхности Луны. Собственной двигательной установки у АМК не было. Из научного оборудования на «Луна-2» были установлены счётчики Гейгера, сцинтилляционные счётчики, магнитометры и детекторы микрометеоритов. «Луна-2» доставила на лунную поверхность вымпел с изображением герба СССР. Копию этого вымпела Н.С. Хрущев вручил президенту США Эйзенхауэру. Стоит отметить, что СССР демонстрировал модель «Луна-2» на различных европейских выставках, и ЦРУ смогло получить неограниченный доступ к модели для изучения возможных характеристик.

«Луна-3»


4 октября 1959 года с Байконура стартовала АМС «Луна-3», целью которой было изучение космического пространства и Луны. В ходе этого полёты впервые в истории были получены фото обратной стороны Луны. Масса аппарата «Луна-3» - 278,5 кг. На борту космического аппарата были установлены системы телеметрической, радиотехнической и фототелеметрической ориентации, позволявшие ориентироваться относительно Луны и Солнца, система энергопитания с солнечными батареями и комплекс научной аппаратуры с фотолабораторией.


«Луна-3» совершила 11 оборотов вокруг Земли, а затем вошла в земную атмосферу и прекратила своё существование. Несмотря на низкое качество снимков, полученные фотографии обеспечили СССР приоритет в наименовании объектов на поверхности Луны. Так на карте Луны появились цирки и кратеры Лобачевского, Курчатова, Герца, Менделеева, Попова, Склодовской-Кюри и лунное море Москвы.

«Рейнджер-4»


23 апреля 1962 года с мыса Канаверал стартовала американская автоматическая межпланетная станция Рейнджер-4. АМС несла капсулу весом 42,6 кг, содержавшую магнитный сейсмометр и гамма- спектрометр. Американцы планировали произвести сброс капсулы в районе Океана Бурь и в течение 30 суток проводить исследования. Но бортовая аппаратуры вышла из строя, и Рейнджер-4 не смог обрабатывать команды, которые поступали с Земли. Продолжительность полёта АМС «Рейнджер-4» 63 часа и 57 минут.

«Луна-4С»


4 января 1963 года ракета-носитель «Молния» вывела на орбиту АМС «Луна-4С», которая должна была впервые в истории космических полётов совершить мягкую посадку на поверхность Луны. Но старт в сторону Луны по техническим причинам не произошёл, и 5 января 1963 года «Луна-4С» вошла в плотные слои атмосферы и прекратила существование.

Рейнджер-9


21 марта 1965 года американцы запустили Рейнджер-9, целью полёта которого было получение детальных фото лунной поверхности на последних минутах перед жёсткой посадкой. Аппарат был сориентирован таким образом, чтобы центральная ось камер полностью совпадала с вектором скорости. Это должно было позволить избежать «смазывания изображения».


За 17,5 минут до падения (расстояние до поверхности Луны составляло 2360 км) удалось получить 5814 телевизионных изображений лунной поверхности. Работа Рейнджера-9 получила высшие оценки мирового научного сообщества.

«Луна-9»


31 января 1966 года с Байконура стартовала советская АМС «Луна-9», которая 3 февраля совершила первую мягкую посадку на Луне. АМС прилунился в Океане Бурь. Со станцией состоялось 7 сеансов связи, продолжительность которых составляла более 8 часов. Во время сеансов связи «Луна-9» передавала панорамные изображения лунной поверхности вблизи места посадки.

«Аполлон-11»


16-24 июля 1969 года состоялся полёт американского пилотируемого космического корабля серии «Аполлон». Этот полёт знаменит в первую очередь тем, что земляне впервые в истории совершили посадку на поверхность космического тела. 20 июля 1969 года в 20:17:39 лунный модуль корабля на борту с командиром экипажа Нилом Армстронгом и пилотом Эдвином Олдрином прилунился в юго-западной части Моря Спокойствия. Астронавты совершили выход на лунную поверхность, который продолжался 2 часа 31 минуту 40 секунд. Пилот командного модуля Майкл Коллинз ждал их на окололунной орбите. Астронавтами в месте посадки был установлен флаг США. Американцы разместили на поверхности Луны комплект научных приборов и собрали 21,6 кг образцов лунного грунта, который доставили на Землю. Известно, что после возвращения члены экипажа и лунные образцы прошли строгий карантин, не выявивший никаких лунных микроорганизмов.


«Аполлон-11» привёл к достижению цели, поставленной президентом США Джоном Кеннеди – осуществить высадку на Луну, обогнав в лунной гонке СССР. Стоит отметить, что факт высадки американцев на поверхность Луны вызывает у современных учёных сомнения.

«Луноход-1»



10 ноября 1970 с космодрома Байконур АМС «Луна-17». 17 ноября АМС прилунилась в Море Дождей, и на лунный грунт съехал первый в мире планетоход – советский дистанционно-управляемый самоходный аппарат «Луноход-1», который был предназначен для исследования Луны и проработал на Луне 10,5 месяцев (11 лунных дней).

За время работы «Луноход-1» преодолел 10 540 метров, двигаясь со скоростью 2 км/ч, и обследовал площадь 80 тыс. кв.м. Он передал на землю 211 лунных панорам и 25 тыс. фото. За 157 сеансов с Землёй «Луноход-1» принял 24 820 радиокоманд и произвёл химический анализ грунта в 25 точках.


15 сентября 1971 года ресурс изотопного источника тепла исчерпался, и температура внутри герметичного контейнера лунохода начала падать. 30 сентября аппарат на связь не вышел, а 4 октября учёные прекратили попытки войти с ним в контакт.

Стоит отметить, что битва за Луну продолжается и сегодня: космические державы разрабатывают самые невероятные технологии, планируя .

Первая ракета в космосе стала значительным прорывом в изучении и развитии космонавтики. Запуск "Спутника" был осуществлен в 1957 году 4 октября. Проектированием и разработкой первого спутника занимался , и именно он стал главным наблюдателем и исследователем первого шага к покорению внеземных вершин. Следующим стал аппарат "Восток", который отправил на лунную орбиту станцию "Луна-1". Его вывели в космос 2 января 1959 года, но проблемы в управлении так и не позволили посадить носитель на поверхность небесного тела.

Первые запуски: животные и люди в покорении космоса

Изучение космического пространства и возможностей летательных аппаратов происходили и с помощью животных. Первые собаки в космосе - Белка и Стрелка . Именно они побывали на орбите и вернулись в целости и полном здравии. Далее производились запуски с обезьянами, собаками, крысами. Основная задача таких полетов заключалась в изучении биологических изменений после проведения в космосе определенного времени и возможностей адаптации к невесомости. Такая подготовка смогла обеспечить удачный первый в мире полет в космос человека.

Восток-1

Полет первого космонавта в космос выполнен 12 апреля 1961 года. А первым кораблем в космосе, который мог быть пилотирован космонавтом, соответственно стал "Восток-1". Аппарат изначально оснащался автоматическим управлением, но в случае необходимости пилот могут перейти в режим ручного координирования. Завершился первый полет вокруг земли спустя 1 час и 48 минут. А известие о полете первого человека в космос мгновенно распространились по всему земному шару.

Развитие области: человек вне аппарата

Первый полет человека в космос являлся главным толчком для активного развития и усовершенствования технологий. Новым этапом стало стремление к выходу из корабля самого пилота. На исследования и разработки было потрачено еще 4 года. В результате 1965 год ознаменовался важным событием в мире космонавтики.

Первый человек вышедший в космос Алексей Архипович Леонов 18 марта покинул корабль. Пробыл он вне летательного аппарата 12 минут и 9 секунд. Это позволило сделать исследователям новые выводы и приступить к совершенствованию проектов и улучшению скафандров. А первый в космосе фото украсили полосы и советских, и зарубежных газет.

Последующее развитие космонавтики


Светлана Савицкая

Исследования области продолжались еще долгие годы, и 25 июля 1984 первый выход в космос был осуществлен женщиной. Светлана Савицкая отправилась в космос на станции "Салют-7", но после в подобных полетах участия не принимала. Они вместе с Валентиной Терешковой (совершила полет в 1963 году) стали первыми женщинами в космосе.

После длительных исследований стали возможны более частые полеты и длительные нахождения во внеземном пространстве. Первым космонавтом вышедшим в космос, ставшим рекордсменом по времени пребывания вне корабля, является Анатолий Соловьев. За весь период работы в сфере космонавтики он осуществил 16 выходов к открытому космосу, а их суммируемая продолжительность пребывания составила 82 часа и 21 минуту.

Несмотря на дальнейший прогресс в покорении внеземных просторов дата первого полета в космос стала праздничным днем на территории СССР. Кроме того 12 апреля стало и международным день первого полета. Спускаемый аппарат от корабля Восток-1 хранится в музее корпорации "Энергия" имени С.П. Королева. Также сохранены и газеты того времени, и даже чучела Белки и Стрелки. Память о достижениях хранится и изучается новыми поколениями. Поэтому ответ на вопрос: "Кто первым полетел в космос?" знает и каждый взрослый, и каждый школьник.

Межпланетные космические аппараты «Венера»

«Венера» — наименование советских межпланетных космических аппаратов, запускаемых к планете Венера начиная с 1961 года. Аппараты, помимо научной аппаратуры, имеют комплект бортовой аппаратуры, включающий системы ориентации, энергопитания от солнечных батарей, корректирующую тормозную двигательную установку, радиосистему дальней связи и измерения орбиты и другое.

Космический аппарат «Венера-1» запущен 12.2.1961; масса 643,5 кг. 19-20 мая 1961 года прошел на расстоянии ~100 тыс. км от Венеры и вышел на орбиту искусственного спутника Солнца с высотой в перигелии 106 млн. км, с высотой в афелии 151 млн. км.

Космический аппарат «Венера-2» запущен 12.11.1965 с целью сближения с Венерой; масса 963 кг. Аппарат имел отсек с фототелевизионной системой и комплекс научной аппаратуры для изучения космического пространства. 27.2.1966 «Венера-2» прошел на расстоянии 24 тыс. км от поверхности Венеры и вышел на орбиту искусственного спутника Солнца с высотой в перигелии ~107 млн. км, с высотой в афелии ~179 млн. км.

Космический аппарат «Венера-3» запущен 16.11.1965 с целью достижения поверхности планеты Венера; масса 960 кг. Космический аппарат имел спускаемый аппарат в виде шара диаметром 0,9 м с теплозащитным покрытием. Посадка на поверхность планеты была предусмотрена с помощью парашютной системы. В спускаемом аппарате находились радиосистема, научная аппаратура, источники питания, В полете было проведено 63 сеанса радиосвязи, осуществлена коррекция траектории, обеспечившая попадание космического аппарата на планету. 1.3.1966 космический аппарат достиг поверхности Венеры, осуществив первый в мире перелет на другую планету.

Космический аппарат «Венера-4» запущен 12.6.1967; масса 1106 кг (масса спускаемого аппарата 383 кг). В полете проведено 114 сеансов радиосвязи с передачей научной информации. На расстоянии 12 млн. км от Земли осуществлена коррекция траектории для попадания на планету. 18.10.1967, пройдя расстояние ~350 млн. км, аппарат вошел со 2-й космической скоростью в атмосферу Венеры и от него отделился спускаемый аппарат (диаметр ~1 м), оснащенный 2 радиопередатчиками дециметрового диапазона, телеметрической системой, научной аппаратурой, радиовысотомером, системой терморегулирования, источниками электропитания. После аэродинамического торможения аппарата скорость снизилась с 10,7 км/с до 300 м/с, затем была введена в действие парашютная система; приборы в течение 1,5 ч спуска на парашюте на ночной стороне планеты измеряли давление, плотность, температуру и химический состав атмосферы Венеры. Космический аппарат впервые осуществил плавный спуск в атмосфере другой планеты. Получены непосредственные данные о характеристиках атмосферы Венеры в интервале давлений 0,05-1,8 МПа.

«Венера-5» и «Венера-6» запущены соответственно 5 и 10 января 1969 года; масса аппаратов по 1130 кг. Аппараты снабжены упрочненными спускаемыми аппаратами массой 405 кг с расширенным составом научной и измерительной аппаратуры для продолжения исследований межпланетной среды и атмосферы Венеры. В полете проводились регулярные сеансы радиосвязи (73 сеанса — с «Венерой-5», 63 сеанса — с «Венерой-6») и прием научной информации (на частоте 922,763 МГц). После выполнения предусмотренной коррекции траектории на расстоянии 15,5-15,7 млн. км от Земли космические корабли достигли Венеры 16 и 17 мая 1969 года; спускаемые аппараты с научной аппаратурой отделились от космических аппаратов, и в результате аэродинамического торможения в атмосфере планеты их скорость снизилась с 11,17 км/с до 210 м/с; затем были приведены в действие парашютные системы и спускаемые аппараты совершили плавный спуск в атмосфере в течение 51-53 мин на ночной стороне планеты. Совместный полет космических аппаратов позволил получить большой объем информации, включая уточненные данные об атмосфере Венеры в интервале давлений 0,05-2,7 МПа, т. е. до более глубоких слоев атмосферы, чем при полете «Венеры-4».

Космический аппарат «Венера-7» запущен 17.8.1970. Масса 1180 кг (масса спускаемого аппарата ~500 кг). На трассе полета были проведены две коррекции траектории, обеспечившие попадание на планету. 15.12.1970, пройдя ~330 млн. км, космический аппарат достиг Венеры; спускаемый аппарат, рассчитанный на давление 18 МПа и температуру 530 °С, совершил спуск на парашюте на поверхность Венеры. Радиосигналы на участке спуска принимались в течение 35 мин, с поверхности — в течение 22 мин 58 с. В спускаемом аппарате находились радиосистема, научная аппаратура, источники питания. В месте посадки «Венеры-7» температура поверхности составила (475±20)°С, давление (9±1,5) МПа.

Космический аппарат «Венера-8» запущен 27.3.1972; масса 1184 кг (масса спускаемого аппарата 495 кг). В полете было проведено 86 сеансов радиосвязи, осуществлена коррекция траектории. 22.7.1972, пройдя более 300 млн. км, аппарат достиг Венеры. Впервые вход в атмосферу и посадка спускаемого аппарата осуществлялись на освещенную Солнцем сторону планеты. Научная аппаратура спускаемого аппарата предназначалась для решения задач: исследования атмосферы (измерения температуры и давления); измерения освещенности в атмосфере и у поверхности планеты; определения скорости ветра на различных уровнях в атмосфере; определения содержания аммиака в атмосфере; измерения перегрузок, возникающих на участке аэродинамического торможения; определения физических характеристик поверхностного слоя и характера поверхностных пород в месте посадки. Работа бортовых систем спускаемого аппарата продолжалась на участке парашютирования ~1 ч и на поверхности 50 мин 11 с. Параметры атмосферы на дневной и ночной сторонах оказались близкими; в месте посадки «Венеры-8» температура составила (470±8) °С, давление (9±0,15) МПа.

«Венера-9» и «Венера-10» — космические аппараты нового типа. «Венера-9» запущен 8.6.1975, «Венера-10» — 14.6.1975. Масса аппаратов 4936 и 5033 кг (масса каждого спускаемого аппарата с теплозащитным корпусом 1560 кг). «Венера-9» и «Венера-10» включают в себя космический и спускаемый аппарат. Основной силовой элемент космического аппарата — блок баков, на нижнем днище которых закреплены ракетные двигатели, на верхнем — приборный отсек, выполненный в форме тора. В верхней части космического аппарата находится переходник для крепления спускаемого аппарата. В приборном отсеке размещены системы управления, терморегулирования и другое. Спускаемый аппарат имеет прочный корпус сферической формы (рассчитан на внешнее давление 10 МПа), покрытый внешней и внутренней теплоизоляцией. В верхней части к спускаемому аппарату крепится аэродинамическое тормозное устройство, в нижней — торовое посадочное устройство. В спускаемом аппарате установлены приборы радиокомплекса, оптико- механическое ТВ устройство, аккумулятор, блоки автоматики, средства терморегулирования, научные приборы. Спускаемый аппарат помещен внутри теплозащитного корпуса сферической формы (диаметр 2,4 м), защищающего его от высоких температур на всем участке торможения. В полете с «Венеры-9» и «Венеры-10» было проведено по две коррекции траектории. За двое суток до подлета к планете от космических аппаратов были отделены спускаемые аппараты, которые совершили мягкую посадку (22 и 25 октября 1975 года) на невидимую в это время с Земли освещенную сторону Венеры. После отделения спускаемых аппаратов космические аппараты были переведены на пролетные траектории, а затем выведены на орбиты искусственных спутников планеты. Для передачи научной информации была реализована необходимая баллистическая схема, обеспечившая требуемое пространственное взаимное положение космических и спускаемых аппаратов. Информация, полученная каждым спускаемым аппаратом, передавалась на свой космический аппарат, ставший к этому времени искусственным спутником Венеры, и ретранслировалась на Землю. Спускаемый аппарат вошел в атмосферу планеты под углом 20-23°.

После аэродинамического торможения осуществлялся спуск на парашютах в течение 20 мин (для проведения исследования облачного слоя), затем был сброшен парашют и осуществлен быстрый спуск. Спускаемый аппарат оснащен комплексом научной аппаратуры, включающим панорамный телефотометр для изучения оптических свойств и получения изображения поверхности в месте посадки; фотометр для измерения световых потоков в зеленых, желтых и красных лучах и в двух участках инфракрасных лучей; фотометр для измерения яркости атмосферы в инфракрасном спектре и определения химического состава атмосферы методом спектрального анализа; датчики давления и температуры; акселерометры для измерения перегрузок на участке входа в атмосферу; масс- спектрометр для измерения химического состава атмосферы на высоте 63-34 км; анемометр для определения скорости ветра на поверхности планеты; гамма- спектрометр для определения содержания естественных радиоактивных элементов в венерианских породах; радиационный плотномер для определения плотности грунта в поверхностном слое планеты.

«Венера-11» и «Венера-12» (модификация космического аппарата «Венера-9») запущены соответственно 9 и 14 сентября 1978 года; масса 4450 и 4461 кг (масса спускаемых аппаратов с теплозащитным корпусом 1600 и 1612 кг). Конструктивно «Венера-11» и «Венера-12» аналогичны «Венере-9» и «Венере-10». В полете с «Венеры-11» и «Венеры-12» было проведено по две коррекции. За двое суток до подлета к планете от космических аппаратов были отделены спускаемые аппараты, совершившие мягкую посадку 21.12.1978 («Венера-12») и 25.12.1978 («Венера-11») на расстоянии 800 км один от другого. После отделения спускаемых аппаратов космические аппараты были переведены на пролетные траектории и стали обращаться вокруг Солнца. Для передачи научной информации была реализована баллистическая схема, обеспечившая требуемое пространственное взаимное положение космических и спускаемых аппаратов. Информация, полученная каждым спускаемым аппаратом, передавалась на свой космический аппарат, затем ретранслировалась на Землю. Спускаемый аппарат вошел в атмосферу планеты под углом ~20°. После аэродинамического торможения осуществлялся спуск на парашюте в течение 10 мин (для проведения исследования облачного слоя), затем был сброшен парашют и осуществлен быстрый спуск на поверхность. Спускаемый аппарат оснащен комплексом научной аппаратуры: масс- спектрометром и газовым хроматографом для проведения тонкого химического анализа атмосферы, нефелометром и рентгенофлюоресцентным анализатором для определения химического состава аэрозолей, измерителем характеристик солнечного излучения, измерителем электрической активности в атмосфере, датчиками давления и температуры, акселерометрами для измерения перегрузок.

На космических аппаратах «Венера-11» и «Венера-12» наряду с советской аппаратурой для исследования корпускулярного, гамма- и рентгеновского излучения Солнца и Галактики была установлена также французская аппаратура для проведения экспериментов по изучению характера солнечного ветра, гамма-излучения Солнца, гамма-всплесков космического происхождения, регистрации дискретных источников гамма-излучения с высокой разрешающей способностью путем совместной работы с искусственным спутником Земли «Прогноз-7», имеющим аналогичную аппаратуру. Научная аппаратура на космическом аппарате «Венера-11» и «Венера-12» проводила регистрацию данных на трассе полета Земля — Венера и после пролета планеты Венера.
Космические аппараты «Венера-13» и «Венера-14» выведены на орбиту соответственно 30.10.1981 и 4.11.1981. По конструкции и назначению аналогичны аппаратам «Венера-11» и «Венера-12». В программу полета входят также исследования характеристик солнечного ветра, космических лучей и межпланетной плазмы. На аппарате наряду с советской научной аппаратурой установлены приборы, созданные во Франции и Австрии. Спускаемые аппараты космических аппаратов «Венера-13» и «Венера-14» по конструкции аналогичны «Венере-9» и «Венере-10»; их масса составляет 4363 и 4363,5 кг соответственно. Масса спускаемого аппарата с теплозащитным кожухом 1645 кг, масса посадочного аппарата 760 кг. В полете были проведены 2 коррекции. Мягкая посадка на Венеру совершена 1 и 5 марта 1982 года соответственно. Аппараты после отделения спускаемых аппаратов переведены на пролетную траекторию и вышли на гелиоцентрическую орбиту. На спускаемом аппарате установлена аппаратура, аналогичная аппаратуре «Венера-9» и «Венера-10». Дополнительно (в отличие от аппаратов «Венера-9» и «Венера-10») получены цветные панорамы места посадки, а с помощью грунтозаборного устройства взяты пробы грунта внутрь спускаемого аппарата и проведен его химический анализ.

Космические аппараты «Венера-15» и «Венера-16» выведены на орбиту 2 и 7 июня 1983 года. Их масса 5250 и 5300 кг соответственно. Предназначены для исследования Венеры с орбиты искусственного спутника Венеры. Выведены на эту орбиту 10 и 14 октября 1983 года. Запуски осуществлялись ракетой-носителем «Молния» («Венера-1» — «Венера-8»), ракетой-носителем «Протон» с дополнительной 4-й ступенью («Венера-9» — «Венера-16»).

Союз ТМА-6

Космический аппарат (КА) - общее название технических устройств, используемых для выполнения разнообразных задач в космическом пространстве, а также проведения исследовательских и иного рода работ на поверхности различных небесных тел. Средствами доставки космических аппаратов на орбиту служат ракеты-носители или самолёты.

Космический аппарат, одной из основных задач которого является транспортировка людей или оборудования в верхней части земной атмосферы - так называемом, ближнем космосе, называют космическим кораблём (КК) или космическим летательным аппаратом (КЛА).

Области использования космических аппаратов обуславливают их разделение по следующим группам:

суборбитальные;
околоземные орбитальные, движущиеся по геоцентрическим орбитам искусственных спутников Земли;
межпланетные (экспедиционные);
напланетные.

Принято различать автоматические спутники (ИСЗ) и пилотируемые космические аппараты. К пилотируемым космическим аппаратам, в частности относят все виды пилотируемых космических кораблей (КК) и орбитальных космических станций (ОС). (Несмотря на то, что современные орбитальные станции совершают свой полёт в области ближнего космоса, и формально могут называться «Космическими летательными аппаратами», в сложившейся традиции, их называют «Космическими аппаратами».)

Название «Космический летательный аппарат» иногда также используется для обозначения активных (то есть маневрирующих) ИСЗ, с целью подчёркивания их отличий от пассивных спутников. В большинстве же случаев значения терминов «Космический летательный аппарат» и «Космический аппарат» синонимичны и взаимозаменяемы.

В активно исследуемых в последнее время проектах создания орбитально-гиперзвуковых летательных аппаратов как частей авиационно-космических систем (АКС) часто используют ещё названия воздушно-космический аппарат (ВКА), обозначая космопланы и космолёты АКС, предназначенные для выполнения управляемого полёта, как в безвоздушном космическом пространстве, так и в плотной атмосфере Земли.

В то время как стран, имеющих ИСЗ - несколько десятков, наиболее сложные технологии автоматических возвращаемых и межпланетных КА освоили всего несколько стран - СССР/Россия, США, Китай, Япония, Индия, Европа/ESA. Пилотируемые КК имеют только первые три из них (кроме того, Япония и Европа имеют КА, посещаемые людьми на орбите, в виде модулей и грузовиков МКС). Также только первые три из них имеют технологии перехвата ИСЗ на орбите (хотя Япония и Европа близки к ней ввиду проведения стыковок).

В 2005 году состоялось 55 запусков космических аппаратов (самих аппаратов было больше, так как за один запуск может выводиться несколько аппаратов). На долю России пришлось 26 запусков. Число коммерческих запусков составило 18.

Космический аппарат

По режиму работы различают следующие типы космических аппаратов:

искусственные спутники Земли - общее название всех аппаратов, находящихся на геоцентрической орбите, то есть вращающихся вокруг Земли
автоматические межпланетные станции (космические зонды) - аппараты, осуществляющие перелёт между Землёй и другими космическими телами ; при этом они могут как выходить на орбиту вокруг изучаемого тела, так и исследовать их с пролётных траекторий, некоторые аппараты после этого направляются за пределы Солнечной системы
космические корабли, автоматические или пилотируемые, - используются для доставки грузов и человека на орбиту Земли; существуют планы полётов на орбиты других планет
орбитальные станции - аппараты, предназначенные для долговременного пребывания и работы людей на орбите Земли
спускаемые аппараты - используются для доставки людей и материалов с орбиты вокруг или межпланетной траектории на поверхность планеты
планетоходы - автоматические лабораторные комплексы или транспортные средства, для перемещения по поверхности планеты и другого небесного тела

По наличию функции возвращения:

Возвращаемые - предусматривают возвращения людей и материалов на Землю, осуществляя мягкую либо жёсткую посадку
Невозвращаемые - при выработке ресурса обычно сходят с орбиты и сгорают в атмосфере

По выполняемым функциям выделяют следующие классы:

метеорологические
навигационные
спутники связи, телевещания, телекоммуникационные спутники
научно-исследовательские
геофизические
геодезические
астрономические
дистанционного зондирования Земли
разведывательные и военные спутники
другие
Многие космические аппараты выполняют сразу несколько функций.

Также по массовым характеристикам:

фемто- - до 100 г
пико- - до 1 кг
нано- - 1-10 кг
микро- - 10-100 кг
мини- - 100-500 кг
малые - 500-1000 кг
большие - более 1000 кг

В общем случае, в полёте космического аппарата выделяются участок выведения, участок орбитального полёта и участок посадки. На участке выведения космический аппарат должен приобрести необходимую космическую скорость в заданном направлении. Орбитальный участок характеризуется инерциальным движением аппарата в соответствии с законами небесной механики. Посадочный участок призван погасить скорость возвращающегося аппарата до допустимой посадочной скорости.

Космический аппарат состоит из нескольких составных частей, прежде всего - это целевая аппаратура, которая обеспечивает выполнение стоящей перед космическим аппаратом задачи. Помимо целевой аппаратуры обычно присутствует целый ряд служебных систем, которые обеспечивают длительное функционирование аппарата в условиях космического пространства, это: системы энергообеспечения, терморегуляции, радиационной защиты, управления движением, ориентации, аварийного спасения, посадки, управления, отделения от носителя, разделения и стыковки, бортового радиокомплекса, жизнеобеспечения. В зависимости от выполняемой космическим аппаратом функции отдельные из перечисленных служебных систем могут отсутствовать, например, спутники связи не имеют систем аварийного спасения, жизнеобеспечения.

Подавляющее большинство систем космического аппарата требуют электропитания, в качестве источника электроэнергии обычно используется связка из солнечных батарей и химических аккумуляторов. Реже используются иные источники, такие как топливные элементы, радиоизотопные батареи, ядерные реакторы, одноразовые гальванические элементы.

Космический аппарат непрерывно получает тепло от внутренних источников (приборы, агрегаты и т. д.) и от внешних: прямого солнечного излучения, отражённого от планеты излучения, собственного излучения планеты, трения об остатки атмосферы планеты на высоте аппарата. Также аппарат теряет тепло в виде излучения. Многие узлы космических аппаратов требовательны к температурному режиму, не терпят перегрева или переохлаждения. Поддержанием баланса между получаемой тепловой энергией и её отдачей, перераспределением тепловой энергией между конструкциями аппарата и таким образом обеспечением заданной температуры занимается система обеспечения теплового режима.

Система управления космического аппарата – осуществляет управление двигательной установкой аппарата с целью обеспечения ориентации аппарата, выполнения манёвров. Обычно имеет связи с целевой аппаратурой, другими служебными подсистемами с целью контроля и управления их состоянием. Как правило, способна обмениваться посредством бортового радиокомплекса с наземными службами управления.

Для обеспечения контроля состояния космического аппарата, управления, передачи информации с целевой аппаратуры требуется канал связи с наземным комплексом управления. В основном для этого используется радиосвязь. При большом удалении КА от Земли требуются остронаправленные антенны и системы их наведения.

Система жизнеобеспечения необходима для пилотируемых КА, а также для аппаратов, на борту которых осуществляются биологические эксперименты. Включает запасы необходимых веществ, а также системы регенерации и утилизации.

Система ориентации космического аппарата включает устройства определения текущей ориентации КА (солнечный датчик, звёздные датчики и т. п.) и исполнительные органы (двигатели ориентации и силовые гироскопы).

Двигательная установка космического аппарата позволяет менять скорость и направление движения КА. Обычно используется химический ракетный двигатель, но это могут быть и электрические, ядерные и другие двигатели; может применяться также солнечный парус.

Система аварийного спасения космического аппарата характерна для пилотируемых космических аппаратов, а также для аппаратов с ядерными реакторами (УС-А) и ядерными боезарядами (Р-36орб).

Новое на сайте

>

Самое популярное