Домой Месячные Понятие о скорости химической реакции. Скорость реакции, ее зависимость от различных факторов

Понятие о скорости химической реакции. Скорость реакции, ее зависимость от различных факторов

Как любые процессы, химические реакции происходят во времени и поэтому характеризуются той или иной скоростью.

Раздел химии, изучающий скорость химических реакций и механизм их протекания, называется химической кинетикой . Химическая кинетика оперирует понятиями «фаза», «система». Фаза это часть системы, отделенная от других ее частей поверхностью раздела.

Системы бывают гомогенные и гетерогенные. Гомогенные системы состоят из одной фазы . Например, воздух или любая смесь газов, раствор соли. Гетерогенные системы состоят из двух или нескольких фаз . Например, жидкая вода – лед – пар, раствор соли + осадок.

Реакции, протекающие в гомогенной системе , называются гомогенными . Например, N 2(г) + 3H 2(г) = 2NH 3(г) . Они протекают во всем объеме. Реакции, протекающиев гетерогенной системе , называютсягетерогенными . Например, С (к) + О 2(г) = СО 2(г) . Они протекают на поверхности раздела фаз.

Скорость химической реакции определяется количеством вещества, вступающего в реакцию или образующегося при реакции за единицу времени в единице объема (для гомогенной реакции) или на единице поверхности раздела фаз (для гетерогенной системы).

Скорость реакции зависит от природы реагирующих веществ, их концентрации, температуры, присутствия катализаторов.

1. Природа реагирующих веществ.

Реакции протекают в направлении разрушения менее прочных связей и образования веществ с более прочными связями. Так, для разрыва связей в молекулах H 2 и N 2 требуются высокие энергии; такие молекулы являются мало реакционноспособными. Для разрыва связей в сильнополярных молекулах (HCl, H 2 O) требуется меньше энергии, и скорость реакции значительно выше. Реакции между ионами в растворах электролитов протекают практически мгновенно.

2. Концентрация.

С увеличением концентрации чаще происходят столкновения молекул реагирующих веществ – скорость реакции возрастает.

Зависимость скорости химической реакции от концентрации реагирующих веществ выражается законом действия масс (ЗДМ) : при постоянной температуре скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ.

В общем случае для гомогенной реакции

nA (г) + mB (г) = pAB (г)

зависимость скорости реакции выражается уравнением:

где С А и С В – концентрации реагирующих веществ, моль/л; k – константа скорости реакции. Для конкретной реакции 2NO (г) + O 2(г) = 2NO 2(г) математическое выражение ЗДМ имеет вид:

υ = k∙∙

Константа скорости реакции k зависит от природы реагирующих веществ, температуры и катализатора, но не зависит от значения концентраций реагентов. Физический смысл константы скорости заключается в том, что она равна скорости реакции при единичных концентрациях реагирующих веществ.



Для гетерогенных реакций (когда вещества находятся в разных агрегатных состояниях) скорость реакции зависит только от концентрации газов или растворенных веществ, а концентрация твердой фазы в математическое выражение ЭДМ не входит:

nA (к) + mB (г) = pAB (г)

Например, скорость реакции горения углерода в кислороде пропорциональна только концентрации кислорода:

С (к) + О 2(г) = СО 2(к)

3. Температура.

При повышении температуры увеличивается скорость движения молекул, что приводит в свою очередь к увеличению числа столкновений между ними. Чтобы реакция осуществлялась, сталкивающиеся молекулы должны обладать определенным избытком энергии. Избыточная энергия, которой должны обладать молекулы для того, чтобы их столкновение могло привести к образованию нового вещества , называется энергией активации . Энергию активации (Е а ) выражают в кДж/моль. Ее величина зависит от природы реагирующих веществ, т.е. для каждой реакции своя энергия активации. Молекулы, обладающие энергией активации , называют активными . Повышение температуры увеличивает число активных молекул, и, следовательно, увеличивает скорость химической реакции.

Зависимость скорости химической реакции от температуры выражается правилом Вант-Гоффа : при повышении температуры на каждые 10 °C скорость реакции возрастает в 2-4 раза .

где υ 2 и υ 1 – скорости реакций при температурах t 2 и t 1 ,

γ – температурный коэффициент скорости реакции, показывающий во сколько раз увеличивается скорость реакции при повышении температуры на 10 0 С.

4. Поверхность соприкосновения реагирующих веществ.

Для гетерогенных систем, чем больше поверхность соприкосновения, тем быстрее протекает реакция. Поверхность твердых веществ может быть увеличена путем их измельчения, а для растворимых веществ – путем их растворения.

5. Катализаторы.

Вещества, которые участвуют в реакциях и увеличивают ее скорость, оставаясь к концу реакции неизменными , называются катализаторами . Изменение скорости реакции под действием катализаторов называется катализом . Различают катализ гомогенный и гетерогенный .

К гомогенному относятся такие процессы, в которых катализатор находится в том же агрегатном состоянии, что и реагирующие вещества.

2SO 2(г) + O 2(г) 2SO 3(г)

Действие гомогенного катализатора заключается в образовании более или менее прочных промежуточных активных соединений, из которых он затем полностью регенерируется.

К гетерогенному катализу относятся такие процессы, в которых катализатор и реагирующие вещества находятся в различных агрегатных состояниях, а реакция протекает на поверхности катализатора.

N 2(г) + 3H 2(г) 2NH 3(г)

Механизм действия гетерогенных катализаторов сложнее гомогенных. Значительную роль в этих процессах играют явления поглощения газообразных и жидких веществ на поверхности твердого вещества – явления адсорбции. В результате адсорбции увеличивается концентрация реагирующих веществ, повышается их химическая активность, что приводит к увеличению скорости реакции.

Изучением скорости химической реакции и условиями, влияющими на ее изменение, занимается одно из направлений физической химии - химическая кинетика. Она также рассматривает механизмы протекания этих реакций и их термодинамическую обоснованность. Эти исследования важны не только в научных целях, но и для контроля взаимодействия компонентов в реакторах при производстве всевозможных веществ.

Понятие скорости в химии

Скоростью реакции принято называть некое изменение концентраций, вступивших в реакцию соединений (ΔС) в единицу времени (Δt). Математическая формула скорости химической реакции выглядит следующим образом:

ᴠ = ±ΔC/Δt.

Измеряют скорость реакции в моль/л∙с, если она происходит во всем объеме (то есть реакция гомогенная) и в моль/м 2 ∙с, если взаимодействие идет на поверхности, разделяющей фазы (то есть реакция гетерогенная). Знак «-» в формуле имеет отношение к изменению значений концентраций исходных реагирующих веществ, а знак «+» - к изменяющимся значениям концентраций продуктов той же самой реакции.

Примеры реакций с различной скоростью

Взаимодействия химических веществ могут осуществляться с различной скоростью. Так, скорость нарастания сталактитов, то есть образования карбоната кальция, составляет всего 0,5 мм за 100 лет. Медленно идут некоторые биохимические реакции, например, фотосинтез и синтез белка. С довольно низкой скоростью протекает коррозия металлов.

Средней скоростью можно охарактеризовать реакции, требующие от одного до нескольких часов. Примером может послужить приготовление пищи, сопровождающееся разложением и превращением соединений, содержащихся в продуктах. Синтез отдельных полимеров требует нагревания реакционной смеси в течение определенного времени.

Примером химических реакций, скорость которых довольно высока, могут послужить реакции нейтрализации, взаимодействие гидрокарбоната натрия с раствором уксусной кислоты, сопровождающееся выделением углекислого газа. Также можно упомянуть взаимодействие нитрата бария с сульфатом натрия, при котором наблюдается выделение осадка нерастворимого сульфата бария.

Большое число реакций способно протекать молниеносно и сопровождаются взрывом. Классический пример - взаимодействие калия с водой.

Факторы, влияющие на скорость химической реакции

Стоит отметить, что одни и те же вещества могут реагировать друг с другом с различной скоростью. Так, например, смесь газообразных кислорода и водорода может довольно длительное время не проявлять признаков взаимодействия, однако при встряхивании емкости или ударе реакция приобретает взрывной характер. Поэтому химической кинетикой и выделены определенные факторы, которые имеют способность оказывать влияние на скорость химической реакции. К ним относят:

  • природу взаимодействующих веществ;
  • концентрацию реагентов;
  • изменение температуры;
  • наличие катализатора;
  • изменение давления (для газообразных веществ);
  • площадь соприкосновения веществ (если говорят о гетерогенных реакциях).

Влияние природы вещества

Столь существенное отличие в скоростях химических реакций объясняется разными значениями энергии активации (Е а). Под ней понимают некое избыточное количество энергии в сравнении со средним ее значением, необходимым молекуле при столкновении, для того чтобы реакция произошла. Измеряется в кДж/моль и значения обычно бывают в границах 50-250.

Принято считать, что если Е а =150 кДж/моль для какой-либо реакции, то при н. у. она практически не протекает. Эта энергия тратится на преодоление отталкивания между молекулами веществ и на ослабление связей в исходных веществах. Иными словами, энергия активации характеризует прочность химических связей в веществах. По значению энергии активации можно предварительно оценить скорость химической реакции:

  • Е а < 40, взаимодействие веществ происходят довольно быстро, поскольку почти все столкнове-ния частиц при-водят к их реакции;
  • 40-<Е а <120, предполагается средняя реакция, поскольку эффективными будет лишь половина соударений молекул (например, реакция цинка с соляной кислотой);
  • Е а >120, только очень малая часть стол-кновений частиц приведет к реакции, и скорость ее будет низкой.

Влияние концентрации

Зависимость скорости реакции от концентрации вернее всего характеризуется законом действующих масс (ЗДМ), который гласит:

Скорость химической реакции имеет прямо пропорциональную зависимость от произведения концентраций, вступивших в реакцию веществ, значения которых взяты в степенях, соответствующих им стехиометрическим коэффициентам.

Этот закон подходит для элементарных одностадийных реакций, или же какой-либо стадии взаимодействия веществ, характеризующегося сложным механизмом.

Если требуется определить скорость химической реакции, уравнение которой можно условно записать как:

αА+ bB = ϲС, то,

в соответствии с выше обозначенной формулировкой закона, скорость можно найти по уравнению:

V=k·[A] a ·[B] b , где

a и b - стехиометрические коэффициенты,

[A] и [B] - концентрации исходных соединений,

k - константа скорости рассматриваемой реакции.

Смысл коэффициента скорости химической реакции заключается в том, что ее значение будет равно скорости, если концентрации соединений будут равны единицам. Следует отметить, что для правильного расчета по этой формуле стоит учитывать агрегатное состояние реагентов. Концентрацию твердого вещества принимают равной единице и не включают в уравнение, поскольку в ходе реакции она остается постоянной. Таким образом, в расчет по ЗДМ включают концентрации только жидких и газообразных веществ. Так, для реакции получения диоксида кремния из простых веществ, описываемой уравнением

Si (тв) + Ο 2(г) = SiΟ 2(тв) ,

скорость будет определяться по формуле:

Типовая задача

Как изменилась бы скорость химической реакции монооксида азота с кислородом, если бы концентрации исходных соединений увеличили в два раза?

Решение: Этому процессу соответствует уравнение реакции:

2ΝΟ + Ο 2 = 2ΝΟ 2 .

Запишем выражения для начальной (ᴠ 1) и конечной (ᴠ 2) скоростей реакции:

ᴠ 1 = k·[ΝΟ] 2 ·[Ο 2 ] и

ᴠ 2 = k·(2·[ΝΟ]) 2 ·2·[Ο 2 ] = k·4[ΝΟ] 2 ·2[Ο 2 ].

ᴠ 1 /ᴠ 2 = (k·4[ΝΟ] 2 ·2[Ο 2 ]) / (k·[ΝΟ] 2 ·[Ο 2 ]).

ᴠ 2 /ᴠ 1 = 4·2/1 = 8.

Ответ: увеличилась в 8 раз.

Влияние температуры

Зависимость скорости химической реакции от температуры была определена опытным путем голландским ученым Я. Х. Вант-Гоффом. Он установил, что скорость многих реакций возрастает в 2-4 раза с повышением температуры на каждые 10 градусов. Для этого правила имеется математическое выражение, которое имеет вид:

ᴠ 2 = ᴠ 1 ·γ (Τ2-Τ1)/10 , где

ᴠ 1 и ᴠ 2 - соответствующие скорости при температурах Τ 1 и Τ 2 ;

γ - температурный коэффициент, равен 2-4.

Вместе с тем это правило не объясняет механизма влияния температуры на значение скорости той или иной реакции и не описывает всей совокупности закономерностей. Логично сделать вывод о том, что с повышением температуры, хаотичное движение частиц усиливается и это провоцирует большее число их столкновений. Однако это не особо влияет на эффективность соударения молекул, поскольку она зависит, главным образом, от энергии активации. Также немалую роль в эффективности столкновения частиц имеет их пространственное соответствие друг другу.

Зависимость скорости химической реакции от температуры, учитывающая природу реагентов, подчиняется уравнению Аррениуса:

k = А 0 ·е -Еа/RΤ , где

А о - множитель;

Е а - энергия активации.

Пример задачи на закон Вант-Гоффа

Как следует изменить температуру, чтобы скорость химической реакции, у которой температурный коэффициент численно равен 3, выроста в 27 раз?

Решение. Воспользуемся формулой

ᴠ 2 = ᴠ 1 ·γ (Τ2-Τ1)/10 .

Из условия ᴠ 2 /ᴠ 1 = 27, а γ = 3. Найти нужно ΔΤ = Τ 2 -Τ 1 .

Преобразовав исходную формулу получаем:

V 2 /V 1 =γ ΔΤ/10 .

Подставляем значения: 27=3 ΔΤ/10 .

Отсюда понятно, что ΔΤ/10 = 3 и ΔΤ = 30.

Ответ: температуру следует повысить на 30 градусов.

Влияние катализаторов

В физической химии скорость химических реакций активно изучает также раздел, называемый катализом. Его интересует, как и почему сравнительно малые количества тех или иных веществ существенно увеличивают скорость взаимодействия других. Такие вещества, которые могут ускорять реакцию, но сами при этом в ней не расходуются, называются катализаторами.

Доказано, что катализаторы меняют механизм самого химического взаимодействия, способствуют появлению новых переходных состояний, для которых характерны меньшие высоты энергетического барьера. То есть они способствуют снижению энергии активации, а значит и увеличению количества эффективных ударений частиц. Катализатор не может вызвать реакцию, которая энергетически невозможна.

Так пероксид водорода способен разлагаться с образованием кислорода и воды:

Н 2 Ο 2 = Н 2 Ο + Ο 2 .

Но эта реакция очень медленная и в наших аптечках она существует в неизменном виде довольно долгое время. Открывая лишь очень старые флаконы с перекисью, можно заметить небольшой хлопок, вызванный давлением кислорода на стенки сосуда. Добавление же всего нескольких крупинок оксида магния спровоцирует активное выделение газа.

Та же реакция разложения перекиси, но уже под действием каталазы, происходит при обработке ран. В живых организмах находится много различных веществ, которые увеличивают скорость биохимических реакций. Их принято называть ферментами.

Противоположный эффект на протекание реакций оказывают ингибиторы. Однако это не всегда плохо. Ингибиторы используют для защиты металлической продукции от коррозии, для продления срока хранения пищи, например, для предотвращения окисления жиров.

Площадь соприкосновения веществ

В том случае, если взаимодействие идет между соединениями, имеющими разные агрегатные состояния, или же между веществами, которые не способны образовывать гомогенную среду (не смешивающиеся жидкости), то еще и этот фактор влияет на скорость химической реакции существенно. Связано это с тем, что гетерогенные реакции осуществляются непосредственно на границе раздела фаз взаимодействующих веществ. Очевидно, что чем обширнее эта граница, тем больше частиц имеют возможность столкнуться, и тем быстрее идет реакция.

Например, гораздо быстрее идет в виде мелких щепок, нежели в виде бревна. С той же целью многие твердые вещества растирают в мелкий порошок, прежде чем добавлять в раствор. Так, порошкообразный мел (карбонат кальция) быстрее действует с соляной кислотой, чем кусочек той же массы. Однако, помимо увеличения площади, данный прием приводит также к хаотичному разрыву кристаллической решетки вещества, а значит, повышает реакционную способность частиц.

Математически скорость гетерогенной химической реакции находят, как изменение количества вещества (Δν), происходящее в единицу вре-мени (Δt) на единице поверхности

(S): V = Δν/(S·Δt).

Влияние давления

Изменение давления в системе оказывает влияние лишь в том случае, когда в реакции принимают участие газы. Повышение давления сопровождается увеличением молекул вещества в единице объема, то есть концентрация его пропорционально возрастает. И наоборот, понижение давление приводит к эквивалентному уменьшению концентрации реагента. В этом случае подходит для вычисления скорости химической реакции формула, соответствующая ЗДМ.

Задача. Как возрастет скорость реакции, описываемой уравнением

2ΝΟ + Ο 2 = 2ΝΟ 2 ,

если объем замкнутой системы уменьшить в три раза (Т=const)?

Решение. При уменьшении объема пропорционально увеличивается давление. Запишем выражения для начальной (V 1) и конечной (V 2) скоростей реакции:

V 1 = k· 2 ·[Ο 2 ] и

V 2 = k·(3·) 2 ·3·[Ο 2 ] = k·9[ΝΟ] 2 ·3[Ο 2 ].

Чтобы найти во сколько раз новая скорость больше начальной, следует разделить левые и правые части выражений:

V 1 /V 2 = (k·9[ΝΟ] 2 ·3[Ο 2 ]) / (k·[ΝΟ] 2 ·[Ο 2 ]).

Значения концентраций и константы скорости сокращаются, и остается:

V 2 /V 1 = 9·3/1 = 27.

Ответ: скорость возросла в 27 раз.

Подводя итог, нужно отметить, что на скорость взаимодействия веществ, а точнее, на количество и качество столкновений их частиц, влияет множество факторов. В первую очередь - это энергия активации и геометрия молекул, которые практически невозможно скорректировать. Что касается остальных условий, то для роста скорости реакции следует:

  • увеличить температуру реакционной среды;
  • повысить концентрации исходных соединений;
  • увеличить давление в системе или уменьшить ее объем, если речь идет о газах;
  • привести разнородные вещества к одному агрегатному состоянию (например, растворив в воде) или увеличить площадь их соприкосновения.

Основные изучаемые понятия:

Скорость химических реакций

Молярная концентрация

Кинетика

Гомогенные и гетерогенные реакции

Факторы, влияющие на скорость химических реакций

Катализатор, ингибитор

Катализ

Обратимые и необратимые реакции

Химическое равновесие

Химические реакции – это реакции, в результате которых из одних веществ получаются другие (из исходных веществ образуются новые вещества). Одни химические реакции протекают за доли секунды (взрыв), другие же – за минуты, дни, годы, десятилетия и т.д.

Например: мгновенно с воспламенением и взрывом происходит реакция горения пороха, а реакция потемнения серебра или ржавления железа (коррозия) идёт так медленно, что проследить за её результатом можно лишь по истечении длительного времени.

Для характеристики быстроты химической реакции используют понятие скорости химической реакции – υ.

Скорость химической реакции – это изменение концентрации одного из реагирующих веществ реакции в единицу времени.

Формула вычисления скорости химической реакции:

υ = с 2 – с 1 = ∆ с
t 2 – t 1 ∆ t

с 1 – молярная концентрация вещества в начальный момент времени t 1

с 2 – молярная концентрация вещества в начальный момент времени t 2

так как скорость химической реакции характеризуется изменением молярной концентрации реагирующих веществ (исходных веществ), то t 2 > t 1 , а с 2 > с 1 (концентрация исходных веществ убывает по мере протекания реакции).

Молярная концентрация (с) – это количество вещества в единице объёма. Единица измерения молярной концентрации - [моль/л].

Раздел химии, который изучает скорость химических реакций, называется химической кинетикой . Зная её законы, человек может управлять химическими процессами, задавать им определённую скорость.

При расчёте скорости химической реакции необходимо помнить, что реакции делятся на гомогенные и гетерогенные.

Гомогенные реакции – реакции, которые протекают в одной среде (т.е. реагирующие вещества находятся в одинаковом агрегатном состоянии; например: газ + газ, жидкость + жидкость ).

Гетерогенные реакции – это реакции, протекающие между веществами в неоднородной среде (есть поверхность раздела фаз, т.е. реагирующие вещества находятся в разном агрегатном состоянии; например: газ + жидкость, жидкость + твёрдое вещество ).

Данная выше формула расчёта скорости химической реакции справедлива только для гомогенных реакций. Если реакция гетерогенная, то она может идти только на поверхности разделе реагирующих веществ.

Для гетерогенной реакции скорость вычисляется по формуле:

∆ν – изменение количества вещества

S – площадь поверхности раздела фаз

∆ t – промежуток времени, за который проходила реакция

Скорость химических реакций зависит от разных факторов: природы реагирующих веществ, концентрации веществ, температуры, катализаторов или ингибиторов.

Зависимость скорости реакций от природы реагирующих веществ.

Разберём данную зависимость скорости реакции на примере: опустим в две пробирки, в которых находится одинаковое количество раствора соляной кислоты (HCl), одинаковые по площади гранулы металлов: в первую пробирку гранулу железа (Fe), а во вторую – гранулу магния (Mg). В результате наблюдений, по скорости выделения водорода (Н 2), можно заметить, что с наибольшей скорость с соляной кислотой реагирует магний, чем железо . На скорость данной химической реакции оказывает влияние природа металла (т.е. магний более химически активный металл, чем железо, и поэтому он более энергично взаимодействует с кислотой).

Зависимость скорости химических реакций от концентрации реагирующих веществ.

Чем выше концентрация реагирующего (исходного) вещества, тем быстрее протекает реакция. И наоборот, чем меньше концентрация реагирующего вещества, тем медленнее идёт реакция.

Например: нальём в одну пробирку концентрированный раствор соляной кислоты (HCl), а в другую – разбавленный раствор соляной кислоты. Положим в обе пробирки по грануле цинка (Zn). Пронаблюдаем, по скорости выделения водорода, что реакция быстрее пойдёт в первой пробирке, т.к. концентрация соляной кислоты в ней больше, чем во второй пробирке.

Для определения зависимости скорости химической реакции применяют закон действия (действующих) масс : скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ, взятых в степенях, которые равны их коэффициентам.

Например, для реакции, протекающей по схеме : nA + mB → D , скорость химической реакции определяют по формуле:

υ х.р. = k · C (A) n · C (B) m , где

υ х.р - скорость химической реакции

C (A) – А

C (В) – молярная концентрация вещества В

n и m – их коэффициенты

k – константа скорости химической реакции (справочная величина).

Закон действия масс не распространяется на вещества, находящиеся в твёрдом состоянии, т.к. их концентрация постоянна (вследствие того, что они реагируют лишь на поверхности, которая остаётся неизменной).

Например: для реакции 2 Cu + O 2 = 2CuO скорость реакции определяют по формуле:

υ х.р. = k · C(O 2)

ЗАДАЧА: Константа скорости реакции 2А + В = D равна 0,005. вычислить скорость реакции при молярной концентрации вещества А = 0,6 моль/л, вещества В = 0,8 моль/л.

Зависимость скорости химической реакции от температуры .

Эта зависимость определяется правилом Вант – Гоффа (1884г.): при увеличении температура на каждые 10 С о скорость химической реакции увеличивается в среднем в 2 – 4 раза.

Так, взаимодействие водорода (Н 2) и кислорода (О 2) при комнатной температуре почти не происходит, так мала скорость этой химической реакции. Но при температуре 500 С о эта реакция протекает за 50 минут, а при температуре 700 С о – почти мгновенно.

Формула расчёта скорости химической реакции по правилу Вант – Гоффа:

где: υ t 1 и υ t 2 - скорости химических реакций при t 2 и t 1

γ – температурный коэффициент, который показывает во сколько раз увеличивается скорость реакции с повышением температуры на 10 С о.

Изменение скорости реакции:

2. Подставим данные из условия задачи в формулу:

Зависимость скорости реакций от специальных веществ – катализаторов и ингибиторов.

Катализатор – вещество, которое увеличивает скорость химической реакции, но само в ней не участвует.

Ингибитор – вещество, замедляющее химическую реакцию, но само в ней не участвующие.

Пример: в пробирку с раствором 3% перекиси водорода (Н 2 О 2), которую нагрели, внесём тлеющую лучину – она не загорится, т.к. скорость реакции разложения перекиси водорода на воду (Н 2 О) и кислород (О 2) очень мала, и образовавшегося кислорода недостаточно для проведения качественной реакции на кислород (поддержание горения). Теперь внесём в пробирку немного чёрного порошка оксида марганца (IV) (MnO 2) и увидим, что началось бурное выделение пузырьков газа (кислорода), а внесённая в пробирку тлеющая лучина ярко вспыхивает. MnO 2 – катализатор данной реакции, он ускорил скорость реакции, но сам в ней не участвовал (это можно доказать взвесив катализатор до и после проведения реакции – его масса не изменится).

Цель работы: изучение скорости химической реакции и ее зависимости от различных факторов: природы реагирующих веществ, концентрации, температуры.

Химические реакции протекают с различной скоростью. Скоростью химической реакции называют изменением концентрации реагирующего вещества в единицу времени. Она равно числу актов взаимодействия в единицу времени в единице объёма для реакции, протекающих в гомогенной системе (для гомогенных реакций), или на единице поверхности раздела фаз для реакций, протекающих в гетерогенной системе (для гетерогенных реакций).

Средняя скорость реакции v ср . в интервале времени от t 1 до t 2 определяется отношением:

где С 1 и С 2 – молярная концентрация любого участника реакции в моменты времени t 1 и t 2 соответственно.

Знак “–“ перед дробью относиться к концентрации исходных веществ, ΔС < 0, знак “+” – к концентрации продуктов реакции, ΔС > 0.

Основные факторы, влияющие на скорость химической реакции: природа реагирующих веществ, их концентрация, давление (если в реакции участвуют газы), температура, катализатор, площадь поверхности раздела фаз для гетерогенных реакций.

Большинство химических реакций представляют собой сложные процессы, протекающие в несколько стадий, т.е. состоящие из нескольких элементарных процессов. Элементарные или простые реакции – это реакции, протекающие в одну стадию.

Для элементарных реакций зависимость скорости реакции от концентрации выражается законом действия масс.

При постоянной температуре скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ, взятых в степенях, равных стехиометрическим коэффициентам.

Для реакции в общем виде

а А + b В… → с С,

cогласно закону действия масс v выражается соотношением

v = К∙с(А) а ∙ с(В) b ,

где с(А) и с(В) – молярные концентрации реагирующих веществ А и В;

К – константа скорости данной реакции, равная v , если с(А) а =1 и с(В) b =1, и зависящая от природы реагирующих веществ, температуры, катализатора, площади поверхности раздела фаз для гетерогенных реакций.

Выражение зависимости скорости реакции от концентрации называют кинетическим уравнением.

В случае сложных реакций закон действия масс применим к каждой отдельной стадии.

Для гетерогенных реакций в кинетическое уравнение входят только концентрации газообразных и растворенных веществ; так, для горения угля

С (к) + О 2 (г) → СО 2 (г)

уравнение скорости имеет вид

v = К∙с(О 2)

Несколько слов о молекулярности и кинетическом порядке реакции.

Понятие «молекулярность реакции» применяют только к простым реакциям. Молекулярность реакции характеризует число частиц, участвующих в элементарном взаимодействии.


Различают моно-, би- и тримолекулярные реакции, в которых участвуют соответственно одна, две и три частицы. Вероятность одновременного столкновения трех частиц мала. Элементарный процесс взаимодействия более чем трех частиц неизвестен. Примеры элементарных реакций:

N 2 O 5 → NO + NO + O 2 (мономолекулярная)

H 2 + I 2 → 2HI (бимолекулярная)

2NO + Cl 2 → 2NOCl (тримолекулярная)

Молекулярность простых реакций совпадает с общим кинетическим порядком реакции. Порядок реакции определяет характер зависимости скорости от концентрации.

Общий (суммарный) кинетический порядок реакции – сумма показателей степеней при концентрациях реагирующих веществ в уравнении скорости реакции, определенная экспериментально.

С повышением температуры скорость большинства химических реакций увеличивается. Зависимость скорости реакции от температуры приближено определяется правилом Вант-Гоффа.

При повышении температуры на каждые 10 градусов скорость большинства реакций увеличивается в 2–4 раза.

где и – скорость реакции соответственно при температурах t 2 и t 1 (t 2 >t 1 );

γ – температурный коэффициент скорости реакции, это число, показывающее, во сколько раз увеличивается скорость химической реакции при увеличении температуры на 10 0 .

С помощью правила Вант-Гоффа возможно лишь примерно оценить влияние температуры на скорость реакции. Более точное описание зависимости скорости реакции температуры осуществимо в рамках теории активации Аррениуса.

Одним из методов ускорения химической реакции является катализ, который осуществляется при помощи веществ (катализаторов).

Катализаторы – это вещества, которые изменяют скорость химической реакции вследствие многократного участия в промежуточном химическом взаимодействии с реагентами реакции, но после каждого цикла промежуточного взаимодействия восстанавливают свой химический состав.

Механизм действия катализатора сводится к уменьшению величины энергии активации реакции, т.е. уменьшению разности между средней энергией активных молекул (активного комплекса) и средней энергией молекул исходных веществ. Скорость химической реакции при этом увеличивается.

Скорость реакции определяется изменением молярной концентрации одного из реагирующих веществ:

V = ± ((С 2 - С 1) / (t 2 - t 1)) = ± (DС / Dt)

Где С 1 и С 2 - молярные концентрации веществ в моменты времени t 1 и t 2 соответственно (знак (+) - если скорость определяется по продукту реакции, знак (-) - по исходному веществу).

Реакции происходят при столкновении молекул реагирующих веществ. Ее скорость определяется количеством столкновений и вероятностью того, что они приведут к превращению. Число столкновений определяется концентрациями реагирующих веществ, а вероятность реакции - энергией сталкивающихся молекул.
Факторы, влияющие на скорость химических реакций.
1. Природа реагирующих веществ. Большую роль играет характер химических связей и строение молекул реагентов. Реакции протекают в направлении разрушения менее прочных связей и образования веществ с более прочными связями. Так, для разрыва связей в молекулах H 2 и N 2 требуются высокие энергии; такие молекулы мало реакционноспособны. Для разрыва связей в сильнополярных молекулах (HCl, H 2 O) требуется меньше энергии, и скорость реакции значительно выше. Реакции между ионами в растворах электролитов протекают практически мгновенно.
Примеры
Фтор с водородом реагирует со взрывом при комнатной температуре, бром с водородом взаимодействует медленно и при нагревании.
Оксид кальция вступает в реакцию с водой энергично, с выделением тепла; оксид меди - не реагирует.

2. Концентрация. С увеличением концентрации (числа частиц в единице объема) чаще происходят столкновения молекул реагирующих веществ - скорость реакции возрастает.
Закон действующих масс (К. Гульдберг, П.Вааге, 1867г.)
Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ.

AA + bB + . . . ® . . .

  • [A] a [B] b . . .

Константа скорости реакции k зависит от природы реагирующих веществ, температуры и катализатора, но не зависит от значения концентраций реагентов.
Физический смысл константы скорости заключается в том, что она равна скорости реакции при единичных концентрациях реагирующих веществ.
Для гетерогенных реакций концентрация твердой фазы в выражение скорости реакции не входит.

3. Температура. При повышении температуры на каждые 10°C скорость реакции возрастает в 2-4 раза (Правило Вант-Гоффа). При увеличении температуры от t 1 до t 2 изменение скорости реакции можно рассчитать по формуле:



(t 2 - t 1) / 10
Vt 2 / Vt 1 = g

(где Vt 2 и Vt 1 - скорости реакции при температурах t 2 и t 1 соответственно; g- температурный коэффициент данной реакции).
Правило Вант-Гоффа применимо только в узком интервале температур. Более точным является уравнение Аррениуса:

  • e -Ea/RT

где
A - постоянная, зависящая от природы реагирующих веществ;
R - универсальная газовая постоянная ;

Ea - энергия активации, т.е. энергия, которой должны обладать сталкивающиеся молекулы, чтобы столкновение привело к химическому превращению.
Энергетическая диаграмма химической реакции.

Экзотермическая реакция Эндотермическая реакция

А - реагенты, В - активированный комплекс (переходное состояние), С - продукты.
Чем больше энергия активации Ea, тем сильнее возрастает скорость реакции при увеличении температуры.

4. Поверхность соприкосновения реагирующих веществ. Для гетерогенных систем (когда вещества находятся в разных агрегатных состояниях), чем больше поверхность соприкосновения, тем быстрее протекает реакция. Поверхность твердых веществ может быть увеличена путем их измельчения, а для растворимых веществ - путем их растворения.

5. Катализ. Вещества, которые участвуют в реакциях и увеличивают ее скорость, оставаясь к концу реакции неизменными, называются катализаторами . Механизм действия катализаторов связан с уменьшением энергии активации реакции за счет образования промежуточных соединений. При гомогенном катализе реагенты и катализатор составляют одну фазу (находятся в одном агрегатном состоянии), при гетерогенном катализе - разные фазы (находятся в различных агрегатных состояниях). Резко замедлить протекание нежелательных химических процессов в ряде случаев можно добавляя в реакционную среду ингибиторы (явление "отрицательного катализа ").

Новое на сайте

>

Самое популярное