Домой Инфильтрат Характеристика азотной кислоты. Азотная кислота: формула химическая, свойства, получение и применение

Характеристика азотной кислоты. Азотная кислота: формула химическая, свойства, получение и применение

Азотистая и азотная кислоты и их соли

Азотистая кислота существует либо в растворе, либо в газовой фазе. Она неустойчива и при нагревании распадается в парах:

2HNO 2 «NO+NO 2 +Н 2 О

Водные растворы этой кислоты при нагревании разлагаются:

3HNO 2 «HNO 3 +H 2 O+2NO

Эта реакция обратимая, поэтому, хотя растворение NO 2 и со­провождается образованием двух кислот: 2NO 2 + Н 2 O=HNO 2 +HNO 3

практически взаимодействием NO 2 с водой получают HNO 3:

3NO 2 +H 2 O=2HNO 3 +NO

По кислотным свойствам азотистая кислота лишь немного сильнее уксусной. Соли ее называются нитритами и в отличие от самой кислоты являются устойчивыми. Из растворов ее солей можно добавлением серной кислоты получить раствор HNO 2:

Ba(NO 2) 2 +H 2 SO 4 =2HNO 2 +BaSO 4 ¯

На основе данных о ее соединениях предполагают два типа структуры азотистой кислоты:

которым соответствуют нитриты и нитросоединения. Нитриты активных металлов имеют структуру I типа, а малоактивных ме­таллов - II типа. Почти все соли этой кислоты хорошо раствори­мы, но нитрит серебра труднее всех. Все соли азотистой кислоты ядовиты. Для химической технологии важны KNO 2 и NaNO 2 , которые необходимы для производства органических красите­лей. Обе соли получают из оксидов азота:

NO+NO 2 +NaOH=2NaNO 2 +Н 2 О или при нагревании их нитратов:

KNO 3 +Pb=KNO 2 +PbO

Pb необходим для связывания выделяющегося кислорода.

Из химических свойств HNO 2 сильнее выражены окислитель­ные, при этом сама она восстанавливается до NO:

Однако можно привести много примеров таких реакций, где азотистая кислота проявляет восстановительные свойства:

Определить присутствие азотистой кислоты и ее солей в рас­творе можно, если прибавить раствор иодида калия и крахмала. Нитрит-ион окисляет анион иода. Эта реакция требует присутст­вия Н + , т.е. протекает в кислой среде.

Азотная кислота

В лабораторных условиях азотную кислоту можно получить действием концентрированной серной кислоты на нитраты:

NaNO 3 +H 2 SO 4(к) =NaHSO 4 +HNO 3 Реакция протекает при слабом нагревании.

Получение азотной кислоты в промышленных масштабах осуществляется каталитическим окислением аммиака кислоро­дом воздуха:

1. Вначале смесь аммиака с воздухом пропускают над платино­вым катализатором при 800°С. Аммиак окисляется до оксида азота (II):

4NH 3 + 5O 2 =4NO+6Н 2 О

2 . При охлаждении происходит дальнейшее окисление NO до NO 2: 2NO+O 2 =2NO 2

3. Образующийся оксид азота (IV) растворяется в воде в присутст­вии избытка О 2 с образованием HNO 3: 4NO 2 +2Н 2 O+O 2 =4HNO 3

Исходные продукты - аммиак и воздух - тщательно очища­ют от вредных примесей, отравляющих катализатор (сероводо­род, пыль, масла и т.п.).

Образующаяся кислота является разбавленной (40-60% -ной). Концентрированную азотную кислоту (96-98% -ную) получают перегонкой разбавленной кислоты в смеси с концентрированной серной кислотой. При этом испаряется только азотная кислота.

Физические свойства

Азотная кислота - бесцветная жидкость, с едким запахом. Очень гигроскопична, «дымит» на воздухе, т.к. ее пары с влагой воздуха образуют капли тумана. Смешивается с водой в любых соотношениях. При -41,6°С переходит в кристаллическое состо­яние. Кипит при 82,6°С.

В HNO 3 валентность азота равна 4, степень окисления +5. Структурную формулу азотной кислоты изображают так:

Оба атома кислорода, связанные только с азотом, равноцен­ны: они находятся на одинаковом расстоянии от атома азота и несут каждый по половинному заряду электрона, т.е. четвертая часть азота разделена поровну между двумя атомами кислорода.

Электронную структуру азотной кислоты можно вывести так:

1. Атом водорода связывается с атомом кислорода ковалентной связью:

2. За счет неспаренного электрона атом кислорода образует кова­лентную связь с атомом азота:

3. Два неспаренных электрона атома азота образуют ковалентную связь со вторым атомом кислорода:

4. Третий атом кислорода, возбуждаясь, образует свободную 2р- орбиталь путем спаривания электронов. Взаимодействие непо­деленной пары азота со свободной орбиталью третьего атома кис­лорода приводит к образованию молекулы азотной кислоты:

Химические свойства

1. Разбавленная азотная кислота проявляет все свойства кислот. Она относится к сильным кислотам. В водных растворах диссо­циирует:

HNO 3 «Н + +NO - 3 Под действием теплоты и на свету частично разлагается:

4HNO 3 =4NO 2 +2Н 2 O+O 2 Поэтому хранят ее в прохладном и темном месте.

2. Для азотной кислоты характерны исключительно окислитель­ные свойства. Важнейшим химическим свойством является взаимодействие почти со всеми металлами. Водород при этом никогда не выделяется. Восстановление азотной кислоты зави­сит от ее концентрации и природы восстановителя. Степень окисления азота в продуктах восстановления находится в ин­тервале от +4 до -3:

HN +5 O 3 ®N +4 O 2 ®HN +3 O 2 ®N +2 O®N +1 2 O®N 0 2 ®N -3 H 4 NO 3

Продукты восстановления при взаимодействии азотной кисло­ты разной концентрации с металлами разной активности при­ведены ниже в схеме.

Концентрированная азотная кислота при обычной температу­ре не взаимодействует с алюминием, хромом, железом. Она пере­водит их в пассивное состояние. На поверхности образуется плен­ка оксидов, которая непроницаема для концентрированной кислоты.

3. Азотная кислота не реагирует с Pt, Rh, Ir, Та, Au. Платина и золото растворяются в «царской водке» - смеси 3 объемов концентрированной соляной кислоты и 1 объема концентриро­ванной азотной кислоты:

Au+НNO 3 +3НСl= AuСl 3 +NO­+2Н 2 О НСl+AuСl 3 =H

3Pt+4HNO 3 +12НСl=3PtCl 4 +4NO­+8H 2 O 2HCl+PtCl 4 =H 2

Действие «царской водки» заключается в том, что азотная кис­лота окисляет соляную до свободного хлора:

HNO 3 +HCl=Сl 2 +2Н 2 О+NOCl 2NOCl=2NO+Сl 2 Выделяющийся хлор соединяется с металлами.

4. Неметаллы окисляются азотной кислотой до соответствующих кислот, а она в зависимости от концентрации восстанавливает­ся до NO или NO 2:

S+бНNO 3(конц) =H 2 SO 4 +6NO 2 ­+2Н 2 ОР+5НNO 3(конц) =Н 3 РO 4 +5NO 2 ­+Н 2 О I 2 +10HNO 3(конц) =2HIO 3 +10NO 2 ­+4Н 2 О 3Р+5HNO 3(p азб) +2Н 2 О= 3Н 3 РО 4 +5NO­

5. Она также взаимодействует с органическими соединениями.

Соли азотной кислоты называются нитратами, представляют собой кристаллические вещества, хорошо растворимые в воде. Их получают при действии HNO 3 на металлы, их оксиды и гидрокси­ды. Нитраты калия, натрия, аммония и кальция называются се­литрами. Селитры используются главным образом как минераль­ные азотные удобрения. Кроме того, KNO 3 применяют для приготовления черного пороха (смесь 75% KNO 3 , 15% С и 10% S). Из NH 4 NO 3 , порошка алюминия и тринитротолуола изготавлива­ют взрывчатое вещество аммонал.



Соли азотной кислоты при нагревании разлагаются, причем продукты разложения зависят от положения солеобразующего металла в ряду стандартных электродных потенциалов:

Разложение при нагревании (термолиз) - важное свойство солей азотной кислоты.

2KNO 3 =2KNO 2 +O 2 ­

2Cu(NO 3) 2 =2CuO+NO 2 ­+O 2 ­

Соли металлов, расположенных в ряду левее Mg, образуют нитриты и кислород, от Mg до Cu - оксид металла, NO 2 и кисло­род, после Си - свободный металл, NO 2 и кислород.

Применение

Азотная кислота - важнейший продукт химической про­мышленности. Большие количества расходуются на приготовле­ние азотных удобрений, взрывчатых веществ, красителей, пласт­масс, искусственных волокон и др. материалов. Дымящая

азотная кислота применяется в ракетной технике в качестве окис­лителя ракетного топлива.

Введение

Вы увлекаетесь цветоводством и пришли в магазин, чтобы купить удобрения для своих цветов. Пересматривая различные названия и составы, вы заметили бутыль с надписью "Азотное удобрение". Читаем его состав: "Фосфор, кальций, то-се... Азотная кислота? А это еще что за зверь?!". Обычно с азотной кислотой знакомятся именно в такой обстановке. И многим тогда же захочется узнать о ней побольше. Сегодня я постараюсь удовлетворить ваше любопытство.

Определение

Азотная кислота (формула HNO 3) является сильной одноосновной кислотой. В неокисленном состоянии она выглядит так, как на фото 1. В обычных условиях это жидкость, но ее можно перевести в твердое агрегатное состояние. И в нем она напоминает кристаллы, имеющие моноклинную или ромбическую решетку.

Химические свойства азотной кислоты

Имеет способность хорошо смешиваться с водой, где происходит почти полная диссоциация этой кислоты на ионы. Концентрированная азотная кислота имеет бурый цвет (фото). Его обеспечивает разложение на диоксид азота, воду и кислород, происходящее из-за солнечного света, который падает на нее. Если ее нагреть, произойдет такое же разложение. С ней реагируют все металлы, за исключением тантала, золота и платиноидов (рутения, родия, палладия, иридия, осмия и платины). Однако ее соединение с соляной кислотой может даже растворять некоторые из них (это так называемая "царская водка"). Азотная кислота, имеющая любую концентрацию, может проявляться в качестве окислителя. Многие органические вещества при взаимодействии с ней могут самовоспламеняться. А некоторые металлы в этой кислоте будут пассивироваться. При действии на них (а также при реакции с оксидами, карбонатами и гидроксидами) азотная кислота образует свои соли, носящие название нитратов. Последние хорошо растворяются в воде. Но нитрат-ионы в ней не гидролизуются. Если нагреть соли данной кислоты, то произойдет их необратимое разложение.

Получение

Для получения азотной кислоты синтетический аммиак окисляют с помощью платино-родиевых катализаторов до появления смеси нитрозных газов, которые в дальнейшем поглощаются водой. Также она образуется, когда смешивают и нагревают калиевую селитру и железный купорос.

Применение

С помощью азотной кислоты производят минеральные удобрения, взрывчатые и некоторые отравляющие вещества. Ею травят печатные формы (офортные доски, магниевые клише и т.д.), а еще подкисляют тонирующие растворы для фото. Из азотной кислоты производят красители и лекарства, а также с ее помощью определяют наличие золота в золотых сплавах.

Физиологическое воздействие

Учитывая степень влияния азотной кислоты на организм, ее относят к 3-му классу опасности (умеренно опасная). Вдыхание ее паров приводит к раздражению дыхательных путей. При попадании на кожу азотная кислота оставляет множество долго заживающих язв. Участки кожи, куда она попала, становятся характерного желтого цвета (фото). Говоря научным языком, происходит ксантопротеиновая реакция. Диоксид азота, который получается при нагревании азотной кислоты или ее разложении на свету, очень токсичен и может вызвать отек легких.

Заключение

Азотная кислота приносит пользу человеку как в разбавленном, так и в чистом состоянии. Но чаще всего она встречается в составе веществ, многие из которых вам наверняка знакомы (например, нитроглицерин).

Окислительные свойства азотной кислоты.

ОВР в статье специально выделены цветом . Обратите на них особое внимание. Эти уравнения могут попасться в ЕГЭ.

– в любом виде (и разбавленная, и концентрированная) является сильным окислителем.

Причем, разбавленная восстанавливается глубже, чем концентрированная.

Окислительные свойства обеспечиваются азотом в высшей степени окисления +5

Какая валентность у азота в этом соединении? Вопрос очень хитрый, многие отвечают на него корректно. У азота в азотной кислоте валентность IV .

Атом азота не может образовать больше ковалентных связей, посмотрите на электронную диаграмму:

Три связи с каждым атомом кислорода, и четвертая как бы распределяется, образуется полуторная связь. Таким образом, валентность азота IV, а степень окисления +5

Первое самое интересное свойство: взаимодействие с металлами.

Водород при взаимодействии с металлами никогда не выделяется

Схема реакции азотной кислоты (и разбавленной, и концентрированной) с металлами:

HNO 3 + Ме → нитрат + H 2 O + продукт восстановленного азота

Два нюанса:

1. , и с концентрированной азотной кислотой в нормальных условиях не реагируют, из-за пассивации. Нужно нагреть.

2. С платиной и золотом концентрированная азотная кислота не реагирует вообще.

Чтобы понять до чего вообще может восстанавливаться азот, посмотрим на диаграмму его степеней окисления:

Азот +5 – окислитель, будет восстанавливаться, то есть понижать степень окисления.

Все возможные продукты восстановления азотной на диаграмме обведены красным.

(Не все конечно, такие реакции вообще что угодно дать могут, но в ЕГЭ образуются только эти).

Определить какой именно продукт будет образовываться можно чисто логически:

  • до таких низких степеней окисления как -3 или +1, с образованием продуктов NH 4 NO 3 или N 2 O соответственно, азот восстанавливают только достаточно сильные, активные металлы: щелочные — 1-я группа главная подгруппа, щелочноземельные, а так же Al и Zn . Как ранее уже было сказано, разбавленная кислота восстанавливается глубже, поэтому при взаимодействии активных металлов с конц. азотной кислотой образуется N 2 O , а при взаимодействии с разб. азотной кислотой NH 4 NO 3 .

4Ba + 10HNO 3( конц .) → 4Ba(NO 3 ) 2 + 5H 2 O + N 2 O

4Ba + 10HNO 3( разб .) → 4Ba(NO 3 ) 2 + 3H 2 O + NH 4 NO 3

8Li + 10HNO 3( конц .) → 8LiNO 3 + 5H 2 O + N 2 O

8Li + 10HNO 3( разб .) → 8LiNO 3 + 3H 2 O + NH 4 NO 3

8Al + 30HNO 3( конц .) (t)→ 8Al(NO 3 ) 3 + 15H 2 O + 3N 2 O

8Al + 30HNO 3( разб .) → 8Al(NO 3 ) 3 + 9H 2 O + 3NH 4 NO 3

Остальные металлы восстанавливают азотную кислоту до +2 или +4, с образованием продуктов соответственно: NO или O 2 .

Разбавленная кислота восстанавливается глубже

  • при взаимодействии с ней металлов, не отличающихся особой активностью, будет образовываться NO . Ну а с конц. азотной NO 2:

Cu + 4HNO 3( конц .) → Cu(NO 3 ) 2 + 2H 2 O + 2NO 2

3Cu + 8HNO 3( разб .) → 3Cu(NO 3 ) 2 + 4H 2 O + 2NO

Fe + 6HNO 3( конц .) (t)→ Fe(NO 3 ) 3 + 3H 2 O + 3NO 2

Fe + 4HNO 3( разб .) → Fe(NO 3 ) 3 + 2H 2 O + NO

(обратите внимание, что железо окисляется до высшей степени окисления)

Ag + 2HNO 3( конц .) → AgNO 3 + H 2 O + NO 2

3Ag + 4HNO 3( разб .) → 3AgNO 3 + 2H 2 O + NO

Если тяжело сразу понять всю логичность выбора, вот таблица:

А зотная кислота окисляет неметаллы до высших оксидов .

Так как неметаллы – не такие сильные восстановители, как активные металлы, азот может восстановиться только до +4, образовав NO 2 или NO соответственно.

При окислении неметаллов концентрированной азотной кислотой образуется бурый газ (NO 2), а если кислота разбавленная, то образуется NO . Схемы реакций следующие:

неметалл + HNO 3 (разб.) → + NO

неметалл + HNO 3 (конц.) → соединение неметалла в высшей степени окисления + NO 2

4 HNO 3(конц.) CO 2 + 2 H 2 O + 4 NO 2

3C + 4HNO 3( разб .) → 3CO 2 + 2H 2 O + 4NO

(угольная кислота не образуется, так как она не стабильна)

5HNO 3( конц .) → H 3 PO 4 + H 2 O + 5 NO 2

3P + 5HNO 3( разб .) + 2H 2 O → 3H 3 PO 4 + 5NO

+ 3 HNO 3( конц .) → H 3 BO 3 + 3NO 2

B + HNO 3( разб .) + H 2 O → H 3 BO 3 + NO

6HNO 3( конц .) → H 2 SO 4 + 2H 2 O + 6NO 2

S + 2HNO 3( разб .) H 2 SO 4 + 2 NO

  • концентрированная азотная кислота окисляет сероводород. Окисление идет глубже при нагревании:

2HNO 3( конц .) + H 2 S → S↓ + 2NO 2 + 2H 2 O

H 2 S + 8HNO 3(конц.) H 2 SO 4 + 8 NO 2 + 4 H 2 O

  • концентрированная азотная кислота окисляет сульфиды до сульфатов:

CuS + 8HNO 3(конц.) CuSO 4 + 4 H 2 O + 8 NO 2

  • азотная кислота настолько сурова, что может окислить даже . Только один – иод. Разбавленная восстанавливается глубже: до +2, концентрированная до +4. А вот иод окисляется не до высшей степени окисления +7 (слишком круто), а до +5, образуя иодноватую кислоту HIO 3:

10 HNO 3(конц.) + I 2 (t)→ 2HIO 3 + 10NO 2 + 4H 2 O

10 HNO 3(разб.) + 3 I 2 (t) → 6HIO 3 + 10NO + 2H 2 O

  • концентрированная азотная кислота реагирует с хлоридами и фторидами. Только следует понимать, что с фторидами и хлоридами протекает обычная реакция ионного обмена с вытеснением галогеноводорода и образованием нитрата:

NaCl (тв.) + HNO 3(конц.) → HCl + NaNO 3

NaF (тв.) + HNO 3(конц.) → HF + NaNO 3

  • А вот с бромидами и иодидами (и с бромоводородами, и с иодоводородами) протекает ОВР. В обоих случаях образуется свободный галоген, а азот восстанавливается до NO 2:

8HNO 3( конц .) + 6KBr ( тв .) → 3Br 2 + 4H 2 O + 6KNO 3 + 2NO 2

4HNO 3( конц .) + 2NaI ( тв .) → 2NaNO 3 + 2NO 2 + 2H 2 O + I 2

7HNO 3( конц .) + NaI → NaNO 3 + 6NO 2 + 3H 2 O + HIO 3

То же самое происходит при взаимодействии с иодо- и бромоводородами:

2HNO 3( конц .) + 2HBr → Br 2 + 2NO 2 + 2H 2 O

6HNO 3( конц .) + HI → HIO 3 + 6NO 2 + 3H 2 O


Реакции с золотом, магнием, медью и серебром

Азотная кислота – сильная кислота. Представляет собой бесцветную жидкость с резким запахом. В небольших количествах образуется при грозовых разрядах и присутствует в дождевой воде.

Под действием света она частично разлагается:

4 HNO 3 = 4 NO 2 + 2 H 2 O + O 2

Азотную кислоту в промышленности получают в три стадии. На первой стадии происходит контактное окисление аммиака до оксида азота (П):

4NH 3 + 5O 2 = 4NO + 6H 2 O

На второй стадии происходит окисление оксида азота (П) до оксида азота (IV) кислородом воздуха:

2NO + O 2 = 2NO 2

На третьей стадии оксид азота (IV) поглощается водой в присутствии O 2:

4NO 2 + 2H 2 O + O 2 = 4HNO 3

В результате получается 60-62% -ная азотная кислота. В лаборатории её получают действием концентрированной азотной кислоты на нитраты при слабом нагревании:

NaNO 3 + H2SO 4 = NaHSO 4 + HNO 3

Молекула азотной кислоты имеет плоское строение. В ней имеется четыре связи с атомом азота:

Однако два атома кислорода равноценны, так как между ними четвёртая связь атома азота делится поровну, а перешедший от него электрон принадлежит им в равной степени. Таким образом, формулу азотной кислоты можно представить в виде:

Азотная кислота является одноосновной кислотой, образует только средние соли – нитраты. Азотная кислота проявляет все свойства кислот: реагирует с оксидами металлов, гидроксидами, солями:

2HNO 3 + CuO = Cu(NO 3) 2 + H 2 O

2HNO 3 + Ba(OH) 2 = Ba(NO 3) 2 + 2H 2 O

2HNO 3 + CaCO 3 = Ca(NO 3) 2 + CO 2 + H 2 O

Концентрированная азотная кислота реагирует со всеми металлами (кроме золота, платины, палладия) с образованием нитратов, оксида азота (+4). воды:

Zn + 4HNO 3 = Zn(NO 3) 2 + 2NO 2 + 2H 2 O

Формально концентрированная азотная кислота не реагирует с железом, алюминием, свинцом, оловом, но на их поверхности она образует оксидную плёнку, предохраняющую растворение общей массы металла:

2Al + 6HNO 3 = Al 2 O 3 + 6NO 2 + 3H 2 O

В зависимости от степени разбавленности, азотная кислота образует следующие продукты реакции:

3Mg + 8HNO 3 (30%) = 3Zn(NO 3) 2 + 2NO + 4H 2 O

4Mg + 10HNO 3 (20%) = 4Zn(NO 3) 2 + N 2 O + 5H 2 O

Сильно разбавленная азотная кислота с активными металлами образует соединения азота (-3), по сути: аммиак, но вследствие избытка азотной кислоты он образует нитрат аммония:

4Ca + 10HNO 3 = 4Ca(NO 3) 2 + NH4NO 3 + 3H 2 O

Активные металлы с сильно разбавленной кислотой на холоде могут образовывать азот:

5Zn + 12HNO 3 = 5Zn(NO 3) 2 + N 2 + 6H 2 O

Металлы: золото, платина, палладий реагируют с концентрированной азотной кислотой в присутствии концентрированной соляной кислоты:

Au + 3HCl + HNO 3 = AuCl3 + NO + 2H 2 O

Азотная кислота, как сильный окислитель, окисляет простые вещества – неметаллы:

6HNO 3 + S = H 2 SO 4 + 6NO 2 + 2H 2 O

2HNO 3 + S = H 2 SO 4 + 2NO

5HNO 3 + P = H 3 PO 4 + 5NO 2 + H 2 O

Кремний окисляется азотной кислотой до оксида:

4HNO 3 + 3Si = 3SiO 2 + 4NO + 2H 2 O

В присутствии фтористоводородной кислоты азотная кислота растворяет кремний:

4HNO 3 + 12HF + 3Si = 3SiF 4 + 4NO + 8H 2 O

Азотная кислота способна окислять сильные кислоты:

HNO 3 + 3HCl = Cl 2 + NOCl + 2H 2 O

Азотная кислота способна окислять как слабые кислоты, так и сложные вещества:

6HNO 3 + HJ = HJO 3 + NO 2 + 3H 2 O

FeS + 10HNO 3 = Fe(NO 3) 2 + SO 2 + 7NO 2 + 5H 2 O

Соли азотной кислоты – нитраты хорошо растворимы в воде. Соли щелочных металлов и аммония называются селитрами . Нитраты обладают менее сильной окислительной активностью, однако в присутствии кислот могут растворять даже неактивные металлы:

3Cu + 2KNO 3 + 4H 2 SO 4 = 3CuSO 4 + K 2 SO 4 + 2NO + 4H 2 O

Нитраты в кислой среде окисляют соли металлов с меньшей валентностью до их солей с высшей валентностью:

3FeCl 2 + KNO 3 + 4HCl = 3FeCl 3 + KCl + NO + 2H 2 O

Характерной особенностью нитратов является образование кислорода при их разложении. При этом продукты реакции могут быть различны и зависеть от положения металла в ряду активности. Нитраты первой группы (от лития до алюминия) разлагаются с образованием нитритов и кислорода:

2KNO 3 = 2KNO 2 + O 2

Нитраты второй группы (от алюминия до меди) разлагаются с образованием оксида металла, кислорода и оксида азота (IV):

2Zn(NO 3)2 = 2ZnO + 4NO2 + O 2

Нитраты третьей группы (после меди) разлагаются на металл, кислород и оксид азота (IV):

Hg(NO 3) 2 = Hg + 2NO 2 + O 2

Нитрат аммония при разложении не образует кислород:

NH 4 NO 3 = N 2 O+ 2H 2 O

Сама же азотная кислота разлагается по механизму нитратов второй группы:

4HNO 3 = 4NO 2 + 2H 2 O + O 2

Если у Вас есть вопросы, приглашаю Вас на свои уроки химии. Записывайтесь в расписании на сайте .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Азотная кислота HNO 3 - бесцветная жидкость, имеет резкий запах, легко испаряется. При попадании на кожу азотная кислота может вызвать сильные ожоги (на коже образуется характерное желтое пятно, его сразу же следует промыть большим количеством воды, а затем нейтрализовать содой NaHCO 3)


Азотная кислота

Молекулярная формула: HNO 3 , B(N) = IV, С.О. (N) = +5

Атом азота образует 3 связи с атомами кислорода по обменному механизму и 1 связь - по донорно-акцепторному механизму.

Физические свойства

Безводная HNO 3 при обычной температуре - бесцветная летучая жидкость со специфическим запахом (т. кип. 82,6"С).


Концентрированная «дымящая» HNO 3 имеет красный или желтый цвет, так как разлагается с выделением NO 2 . Азотная кислота смешивается с водой в любых соотношениях.

Способы получения

I. Промышленный - 3-стадийный синтез по схеме: NH 3 → NO → NO 2 → HNO 3


1 стадия: 4NH 3 + 5O 2 = 4NO + 6H 2 O


2 стадия: 2NO + O 2 = 2NO 2


3 стадия: 4NO 2 + O 2 + 2H 2 O = 4HNO 3


II. Лабораторный - длительное нагревание селитры с конц. H 2 SO 4:


2NaNO 3 (тв.) +H 2 SO 4 (конц.) = 2HNO 3 + Na 2 SO 4


Ba(NO 3) 2 (тв) +H 2 SO 4 (конц.) = 2HNO 3 + BaSO 4

Химические свойства

HNO 3 как сильная кислота проявляет все общие свойства кислот

HNO 3 → H + + NO 3 -


HNO 3 - очень реакционноспособное вещество. В химических реакциях проявляет себя как сильная кислота и как сильный окислитель.


HNO 3 взаимодействует:


а) с оксидами металлов 2HNO 3 + CuO = Cu(NO 3) 2 + H 2 O


б) с основаниями и амфотерными гидроксидами 2HNO 3 + Cu(OH) 2 = Cu(NO 3) 2 + 2H 2 O


в) с солями слабых кислот 2HNO 3 + СaСO 3 = Ca(NO 3) 2 + СO 2 + H 2 O


г) с аммиаком HNO 3 + NH 3 = NH 4 NO 3

Отличие HNO 3 от других кислот

1. При взаимодействии HNO 3 с металлами практически никогда не выделяется Н 2 , так как ионы H + кислоты не участвуют в окислении металлов.


2. Вместо ионов H + окисляющее действие оказывают анионы NO 3 - .


3. HNO 3 способна растворять не только металлы, расположенные в ряду активности левее водорода, но и малоактивные металлы - Си, Аg, Нg. В смеси с HCl растворяет также Au, Pt.

HNO 3 - очень сильный окислитель

I. Окисление металлов:


Взаимодействие HNO 3: а) с Me низкой и средней активности: 4HNO 3 (конц.) + Сu = 2NO 2 + Cu(NO 3) 2 + 2H 2 O


8HNO 3 (разб.) + ЗСu = 2NO + 3Cu(NO 3) 2 + 4H 2 O


б) с активными Me: 10HNO 3 (разб.) + 4Zn = N 2 O + 4Zn(NO 3) 2 + 5H 2 O


в) с щелочными и щелочноземельными Me: 10HNO 3 (оч. разб.) + 4Са = NH 4 NO 3 + 4Ca(NO 3) 2 + 3H 2 O


Очень концентрированная HNO 3 при обычной температуре не растворяет некоторые металлы, в том числе Fe, Al, Cr.


II. Окисление неметаллов:


HNO 3 окисляет Р, S, С до их высших С.О., сама при этом восстанавливается до NO (HNO 3 разб.) или до NO 2 (HNO 3 конц).


5HNO 3 + Р = 5NO 2 + H 3 PO 4 + H 2 O


2HNO 3 + S = 2NO + H 2 SO 4


III. Окисление сложных веществ:


Особенно важными являются реакции окисления сульфидов некоторых Me, которые не растворяются в других кислотах. Примеры:


8HNO 3 + PbS = 8NO 2 + PbSO 4 + 4H 2 O


22HNO 3 + ЗСu 2 S = 10NO + 6Cu(NO 3) 2 + 3H 2 SO 4 + 8H 2 O

HNO 3 - нитрующий агент в реакциях органического синтеза

R-Н + НО-NO 2 → R-NO 2 + H 2 O



С 2 Н 6 + HNO 3 → C 2 H 5 NO 2 + H 2 O нитроэтан


С 6 Н 5 СН 3 + 3HNO 3 → С 6 Н 2 (NO 2) 3 СН 3 + ЗH 2 O тринитротолуол


С 6 Н 5 ОН + 3HNO 3 → С 6 Н 5 (NO 2) 3 OH + ЗH 2 O тринитрофенол

HNO 3 этерифицирует спирты

R-ОН + НO-NO 2 → R-O-NO 2 + H 2 O



С 3 Н 5 (ОН) 3 + 3HNO 3 → С 3 Н 5 (ONO 2) 3 + ЗH 2 O тринитрат глицерина

Разложение HNO 3

При хранении на свету, и особенно при нагревании, молекулы HNO 3 разлагаются за счет внутримолекулярного окисления-восстановления:


4HNO 3 = 4NO 2 + O 2 + 2H 2 O


Выделяется красно-бурый ядовитый газ NO 2 , который усиливает агрессивно-окислительные свойства HNO 3

Соли азотной кислоты - нитраты Me(NO 3) n

Нитраты - бесцветные кристаллические вещества, хорошо растворяются в воде. Имеют химические свойства, характерные для типичных солей.


Отличительные особенности:


1) окислительно-восстановительное разложение при нагревании;


2) сильные окислительные свойства расплавленных нитратов щелочных металлов.

Термическое разложение

1. Разложение нитратов щелочных и щелочноземельных металлов:


Me(NO 3) n → Me(NO 2) n + O 2


2. Разложение нитратов металлов, стоящих в ряду активности металлов от Mg до Cu:


Me(NO 3) n → Ме x О y + NO 2 + O 2


3. Разложение нитратов металлов, стоящих в ряду активности металлов превее Cu:


Me(NO 3) n → Ме + NO 2 + O 2


Примеры типичных реакций:


1) 2NaNO 3 = 2NaNO 2 + O 2


2) 2Cu(NO 3) 2 = 2CuO + 4NO 2 + O 2


3) 2AgNO 3 = 2Ag + 2NO 2 + O 2

Окислительное действие расплавов нитратов щелочных металлов

В водных растворах нитраты, в противоположность HNO 3 , почти не проявляют окислительной активности. Однако расплавы нитратов щелочных металлов и аммония (селитр) являются сильными окислителями, поскольку разлагаются с выделением активного кислорода.

Новое на сайте

>

Самое популярное