Домой Защемление нерва Строение атомного ядра. Строение ядра атома

Строение атомного ядра. Строение ядра атома

Размеры планет и даже самого Солнца малы по сравнению с размерами солнечной системы. Так, напри­мер, расстояние от Земли до Солнца больше диаметра Солнца, примерно, в 100 раз, а расстояние от Солнца до самой удалённой планеты Плутона больше диамет­ра Солнца в 4 000 раз. Объём Солнца составляет лишь

■iwuoiuoььoJ - Объёма шара с радиусом, равным рас­стоянию от Солнца до Плутона. Такое же положе­ние имеет место и в атоме, несмотря на то, что почти вся тяжесть атома сосредоточена в его ядре, 10 размеры ядра очень малы по сравнению с размерами атома.

Диаметры ядер атомов разных элементов несколько отличаются друг от друга, но в общем диаметр ядра, примерно, в 100 000 раз меньше диаметра атома. Таким

Образом, ядро занимает в атоме лишь "Т"оооооо ооо ооо ооо"

Часть его объёма (напоминаем, что объём пропорцио-

Нален кубу диаметра). Ядро в атоме занимает в 2 000 раз меньше места, чем Солнце в солнечной системе.

Если увеличить ядро до размеров булавочной голов­ки, то атом с трудом поместился бы в огромном сто­метровом зале. Если же мы увеличили бы ядро до размеров винтика карманных часов, то атом был бы больше огромного океанского парохода (рис. 3).

Предположим теперь, что удалось бы сжать веще­ство до такой степени, что ядра атомов касались бы друг друга. Тогда огромный линкор водоизмещением в 45 000 тонн поместился бы в булавочной головке!

Наша задача состоит в том, чтобы рассказать об атомном ядре и его энергии. Об атоме и его строении мы подробно говорить здесь не собираемся, и если выше нам пришлось кратко остановиться на этом

Вопросе, то лишь потому, что ядро является частью атома. Не зная строения атома, изучать свойства ядра невозможно. Поэтому физики вначале энергично заня­лись атомом. Изучение ядра оказалось в центре вни­мания лишь лет 15 тому назад, когда строение атома стало хорошо известно, В настоящее время исследова­ние свойств и строения атомного ядра как раз и яв­ляется основным вопросом, которым занимаются мно­гие физики.

Мы знаем, что ядро является центром атома, знаем уже его заряд, вес и размеры.

Но как ядро устроено? Состоит ли ядро из других более простых частичек или само является простейшей частицей? Нельзя ли разрушить ядро и как это сде­лать? Все эти вопросы сейчас же встают перед нами и на них нужно ответить.

Применение ядерной энергии является совсем новой областью науки и техники. Поэтому многое здесь ещё неизвестно. Фантазировать же на эту тему мы не будем. Использование ядерной энергии, о котором мы гово­рили, …

Кроме урана, под влиянием нейтронов делятся также ядра элементов протактиния (заряд 91) и тория (заряд 90). Использование протактиния не имеет абсо­лютно никакого значения, так как этот элемент очень редок: во …

235 Деление ядер урана 92 в природном уране, смешан* ном с графитом, приводит, как это ясно из сказанного выше, к образованию плутония. Замечательно, что плу­тоний обладает такими же свойствами, как …

Распределение заряда и массы в атомных ядрах исследуется в экспериментах по упругому рассеянию на ядрах α -частиц (исторически первыми были эксперименты Резерфорда), электронов и протонов. Выяснилось, что как плотность распределения заряда, так и плотность распределения массы ядра приближенно выражаются распределением Ферми (Рис. 1.3):

Распределения Ферми для плотности заряда и для плотности распределения массы в ядре имеют т.н. «диффузный» край – это то расстояние, на котором плотность ядра падает (рис. 1.3) от значений 0.9ρ (0) до 0.1ρ (0).
Величину R называют радиусом ядра. Отметим, что поскольку распределение плотности заряда и массы близки, но не совпадают друг с другом, отличаются также и зарядовый и массовый радиусы. В дальнейшем будут даны примеры и рассмотрены причины различия этих величин. В приближенных расчетах можно считать эти величины совпадающими и полагать, что радиус ядра

Величина r 0 ≈ 1.2 – 1.3 Фм (1 Фм = 10 -13 см). Из (1.13) получим плотность ядерной материи ρ ≈ 2·10 14 г/см 3 . Отметим, что независимость средней плотности ядра ρ (0), а также средней нуклонной плотности, от числа нуклонов в ядре является следствием несжимаемости ядерной материи (точнее, слабой ее сжимаемости).

В большинстве приближенных расчетов среднюю плотность ядра можно считать постоянной величиной, однако отклонение от постоянства хорошо видно на примере распределения среднеквадратичного радиуса распределения заряда для разных ядер. На рис. 1.4 показаны результаты исследований среднеквадратичного зарядового радиуса для некоторых ядер, полученные в экспериментах по неупругому рассеянию электронов на ядрах. Следует обратить внимание на отклонение величины зарядового радиуса от (1.12). Например, зарядовый радиус ядра 48 Са меньше, чем зарядовый радиус ядра 40 Са. Для изотопов титана рост А ведет к уменьшению зарядового радиуса. Эти эффекты нашли качественное объяснение в модели ядерных оболочек.

При лобовом соударении налетающей частицы и ядра золота кинетическая энергия Т α-частицы целиком тратится на преодоление потенциального кулоновского барьера:


При кинетических энергиях α -частиц выше 22 МэВ расстояние наибольшего сближения ядер гелия и золота начинает быть сравнимым с размерами ядерных систем. Это означает, что чисто кулоновское рассеяние, отраженное формулой Резерфорда, не исчерпывает взаимодействие нуклонов. При больших энергиях в формулу Резерфорда вводят еще один множитель – формфактор, учитывающий размеры и внутреннюю структуру сталкивающихся нуклонов. Результат решения данной задачи показывает, что введение формфактора необходимо при кинетических энергиях α -частицы, превышающих 22 МэВ . (В данном примере умножение и деление на константу конверсии позволяет избежать введения явного вида квадрата единичного заряда, используя вместо него хорошо известную величину – постоянную тонкой структуры e 2 /ћ c = 1/137).
При оценке радиусов распределения заряда в ядре (кулоновского радиуса) используют различие энергий связи двух «зеркальных» ядер-изобар (т.е. ядер с одинаковым числом нуклонов А, причем число протонов одного из них равно числу нейтронов другого).

Атомное ядро, рассматриваемое как класс частиц с определённым числом протонов и нейтронов, принято называть нуклидом .
В некоторых редких случаях могут образовываться короткоживущие экзотические атомы , у которых вместо нуклона ядром служат иные частицы.

Количество протонов в ядре называется его зарядовым числом Z {\displaystyle Z} - это число равно порядковому номеру элемента , к которому относится атом, в таблице (Периодической системе элементов) Менделеева . Количество протонов в ядре определяет структуру электронной оболочки нейтрального атома и, таким образом, химические свойства соответствующего элемента. Количество нейтронов в ядре называется его изотопическим числом N {\displaystyle N} . Ядра с одинаковым числом протонов и разным числом нейтронов называются изотопами . Ядра с одинаковым числом нейтронов, но разным числом протонов - называются изотонами . Термины изотоп и изотон используются также применительно к атомам, содержащим указанные ядра, а также для характеристики нехимических разновидностей одного химического элемента. Полное количество нуклонов в ядре называется его массовым числом A {\displaystyle A} ( A = N + Z {\displaystyle A=N+Z} ) и приблизительно равно средней массе атома, указанной в таблице Менделеева. Нуклиды с одинаковым массовым числом, но разным протон-нейтронным составом принято называть изобарами .

Как и любая квантовая система, ядра могут находиться в метастабильном возбуждённом состоянии, причём в отдельных случаях время жизни такого состояния исчисляется годами. Такие возбуждённые состояния ядер называются ядерными изомерами .

Энциклопедичный YouTube

    1 / 5

    Строение атомного ядра. Ядерные силы

    Ядерные силы Энергия связи частиц в ядре Деление ядер урана Цепная реакция

    Строение атомного ядра Ядерные силы

    Химия. Строение атома: Атомное ядро. Центр онлайн-обучения «Фоксфорд»

    Ядерные реакции

    Субтитры

История

Рассеяние заряженных частиц может быть объяснено, если предположить такой атом, который состоит из центрального электрического заряда, сосредоточенного в точке и окружённого однородным сферическим распределением противоположного электричества равной величины. При таком устройстве атома α- и β-частицы, когда они проходят на близком расстоянии от центра атома, испытывают большие отклонения, хотя вероятность такого отклонения мала.

Таким образом Резерфорд открыл атомное ядро, с этого момента и ведёт начало ядерная физика, изучающая строение и свойства атомных ядер.

После обнаружения стабильных изотопов элементов, ядру самого лёгкого атома была отведена роль структурной частицы всех ядер. С 1920 года ядро атома водорода имеет официальный термин - протон . После промежуточной протон-электронной теории строения ядра, имевшей немало явных недостатков, в первую очередь она противоречила экспериментальным результатам измерений спинов и магнитных моментов ядер , в 1932 году Джеймсом Чедвиком была открыта новая электрически нейтральная частица, названная нейтроном . В том же году Иваненко и, независимо, Гейзенберг выдвинули гипотезу о протон-нейтронной структуре ядра. В дальнейшем, с развитием ядерной физики и её приложений, эта гипотеза была полностью подтверждена .

Теории строения атомного ядра

В процессе развития физики выдвигались различные гипотезы строения атомного ядра; тем не менее, каждая из них способна описать лишь ограниченную совокупность ядерных свойств. Некоторые модели могут взаимоисключать друг друга.

Наиболее известными являются следующие:

  • Капельная модель ядра - предложена в 1936 году Нильсом Бором .
  • Оболочечная модель ядра - предложена в 30-х годах XX века.
  • Обобщённая модель Бора - Моттельсона
  • Кластерная модель ядра
  • Модель нуклонных ассоциаций
  • Сверхтекучая модель ядра
  • Статистическая модель ядра

Ядерно-физические характеристики

Впервые заряды атомных ядер определил Генри Мозли в 1913 году . Свои экспериментальные наблюдения учёный интерпретировал зависимостью длины волны рентгеновского излучения от некоторой константы Z {\displaystyle Z} , изменяющейся на единицу от элемента к элементу и равной единице для водорода:

1 / λ = a Z − b {\displaystyle {\sqrt {1/\lambda }}=aZ-b} , где

A {\displaystyle a} и b {\displaystyle b} - постоянные.

Из чего Мозли сделал вывод, что найденная в его опытах константа атома, определяющая длину волны характеристического рентгеновского излучения и совпадающая с порядковым номером элемента, может быть только зарядом атомного ядра, что стало известно под названием закон Мозли .

Масса

Из-за разницы в числе нейтронов A − Z {\displaystyle A-Z} изотопы элемента имеют разную массу M (A , Z) {\displaystyle M(A,Z)} , которая является важной характеристикой ядра. В ядерной физике массу ядер принято измерять в атомных единицах массы (а. е. м. ), за одну а. е. м. принимают 1/12 часть массы нуклида 12 C . Следует отметить, что стандартная масса, которая обычно приводится для нуклида - это масса нейтрального атома . Для определения массы ядра нужно из массы атома вычесть сумму масс всех электронов (более точное значение получится, если учесть ещё и энергию связи электронов с ядром).

Кроме того, в ядерной физике часто используется энергетический эквивалент массы . Согласно соотношению Эйнштейна , каждому значению массы M {\displaystyle M} соответствует полная энергия:

E = M c 2 {\displaystyle E=Mc^{2}} , где c {\displaystyle c} - скорость света в вакууме .

Соотношение между а. е. м. и её энергетическим эквивалентом в джоулях :

E 1 = 1 , 660539 ⋅ 10 − 27 ⋅ (2 , 997925 ⋅ 10 8) 2 = 1 , 492418 ⋅ 10 − 10 {\displaystyle E_{1}=1,660539\cdot 10^{-27}\cdot (2,997925\cdot 10^{8})^{2}=1,492418\cdot 10^{-10}} , E 1 = 931 , 494 {\displaystyle E_{1}=931,494} .

Радиус

Анализ распада тяжёлых ядер уточнил оценку Резерфорда и связал радиус ядра с массовым числом простым соотношением:

R = r 0 A 1 / 3 {\displaystyle R=r_{0}A^{1/3}} ,

где - константа.

Так как радиус ядра не является чисто геометрической характеристикой и связан прежде всего с радиусом действия ядерных сил , то значение r 0 {\displaystyle r_{0}} зависит от процесса, при анализе которого получено значение R {\displaystyle R} , усреднённое значение r 0 = 1 , 23 ⋅ 10 − 15 {\displaystyle r_{0}=1,23\cdot 10^{-15}} м, таким образом радиус ядра в метрах :

R = 1 , 23 ⋅ 10 − 15 A 1 / 3 {\displaystyle R=1,23\cdot 10^{-15}A^{1/3}} .

Моменты ядра

Как и составляющие его нуклоны, ядро имеет собственные моменты.

Спин

Поскольку нуклоны обладают собственным механическим моментом, или спином, равным 1 / 2 {\displaystyle 1/2} , то и ядра должны иметь механические моменты. Кроме того, нуклоны участвуют в ядре в орбитальном движении, которое также характеризуется определённым моментом количества движения каждого нуклона. Орбитальные моменты принимают только целочисленные значения ℏ {\displaystyle \hbar } (постоянная Дирака). Все механические моменты нуклонов, как спины, так и орбитальные, суммируются алгебраически и составляют спин ядра.

Несмотря на то, что число нуклонов в ядре может быть очень велико, спины ядер обычно невелики и составляют не более нескольких ℏ {\displaystyle \hbar } , что объясняется особенностью взаимодействия одноимённых нуклонов. Все парные протоны и нейтроны взаимодействуют только так, что их спины взаимно компенсируются, то есть пары всегда взаимодействуют с антипараллельными спинами. Суммарный орбитальный момент пары также всегда равен нулю. В результате ядра, состоящие из чётного числа протонов и чётного числа нейтронов, не имеют механического момента. Отличные от нуля спины существуют только у ядер, имеющих в своём составе непарные нуклоны, спин такого нуклона суммируется с его же орбитальным моментом и имеет какое-либо полуцелое значение: 1/2, 3/2, 5/2. Ядра нечётно-нечётного состава имеют целочисленные спины: 1, 2, 3 и т. д. .

Магнитный момент

Измерения спинов стали возможными благодаря наличию непосредственно связанных с ними магнитных моментов . Они измеряются в магнетонах и у различных ядер равны от −2 до +5 ядерных магнетонов. Из-за относительно большой массы нуклонов магнитные моменты ядер очень малы по сравнению с магнитными моментами электронов , поэтому их измерение гораздо сложнее. Как и спины, магнитные моменты измеряются спектроскопическими методами , наиболее точным является метод ядерного магнитного резонанса .

Магнитный момент чётно-чётных пар, как и спин, равен нулю. Магнитные моменты ядер с непарными нуклонами образуются собственными моментами этих нуклонов и моментом, связанным с орбитальным движением непарного протона .

Электрический квадрупольный момент

Атомные ядра, спин которых больше или равен единице, имеют отличные от нуля квадрупольные моменты, что говорит об их не точно сферической форме. Квадрупольный момент имеет знак плюс, если ядро вытянуто вдоль оси спина (веретенообразное тело), и знак минус, если ядро растянуто в плоскости, перпендикулярной оси спина (чечевицеобразное тело). Известны ядра с положительными и отрицательными квадрупольными моментами. Отсутствие сферической симметрии у электрического поля , создаваемого ядром с ненулевым квадрупольным моментом, приводит к образованию дополнительных энергетических уровней атомных электронов и появлению в спектрах атомов линий сверхтонкой структуры , расстояния между которыми зависят от квадрупольного момента .

Энергия связи

Устойчивость ядер

Из факта убывания средней энергии связи для нуклидов с массовыми числами больше или меньше 50-60 следует, что для ядер с малыми A {\displaystyle A} энергетически выгоден процесс слияния - термоядерный синтез , приводящий к увеличению массового числа, а для ядер с большими A {\displaystyle A} - процесс деления . В настоящее время оба этих процесса, приводящих к выделению энергии, осуществлены, причём последний лежит в основе современной ядерной энергетики , а первый находится в стадии разработки.

Детальные исследования показали, что устойчивость ядер также существенно зависит от параметра N / Z {\displaystyle N/Z} - отношения чисел нейтронов и протонов. В среднем для наиболее стабильных ядер N / Z ≈ 1 + 0.015 A 2 / 3 {\displaystyle N/Z\approx 1+0.015A^{2/3}} , поэтому ядра лёгких нуклидов наиболее устойчивы при N ≈ Z {\displaystyle N\approx Z} , а с ростом массового числа всё более заметным становится электростатическое отталкивание между протонами, и область устойчивости сдвигается в сторону N > Z {\displaystyle N>Z} (см. поясняющий рисунок ).

Если рассмотреть таблицу стабильных нуклидов, встречающихся в природе, можно обратить внимание на их распределение по чётным и нечётным значениям Z {\displaystyle Z} и N {\displaystyle N} . Все ядра с нечётными значениями этих величин являются ядрами лёгких нуклидов 1 2 H {\displaystyle {}_{1}^{2}{\textrm {H}}} , 3 6 Li {\displaystyle {}_{3}^{6}{\textrm {Li}}} , 5 10 B {\displaystyle {}_{5}^{10}{\textrm {B}}} , 7 14 N {\displaystyle {}_{7}^{14}{\textrm {N}}} . Среди изобар с нечётными A, как правило, стабилен лишь один. В случае же чётных A {\displaystyle A} часто встречаются по два, три и более стабильных изобар, следовательно, наиболее стабильны чётно-чётные, наименее - нечётно-нечётные. Это явления свидетельствует о том, что как нейтроны, так и протоны, проявляют тенденцию группироваться парами с антипараллельными спинами , что приводит к нарушению плавности вышеописанной зависимости энергии связи от A {\displaystyle A} .

Таким образом, чётность числа протонов или нейтронов создаёт некоторый запас устойчивости, который приводит к возможности существования нескольких стабильных нуклидов, различающихся соответственно по числу нейтронов для изотопов и по числу протонов для изотонов. Также чётность числа нейтронов в составе тяжёлых ядер определяет их способность делиться под воздействием нейтронов .

Ядерные силы

Ядерные силы - это силы, удерживающие нуклоны в ядре, представляющие собой большие силы притяжения, действующие только на малых расстояниях. Они обладают свойствами насыщения, в связи с чем ядерным силам приписывается обменный характер (с помощью пи-мезонов). Ядерные силы зависят от спина, не зависят от электрического заряда и не являются центральными силами .

Уровни ядра

В отличие от свободных частиц, для которых энергия может принимать любые значения (так называемый непрерывный спектр), связанные частицы (то есть частицы, кинетическая энергия которых меньше абсолютного значения потенциальной), согласно квантовой механике , могут находиться в состояниях только с определёнными дискретными значениями энергий, так называемый дискретный спектр. Так как ядро - система связанных нуклонов, оно обладает дискретным спектром энергий. Обычно оно находится в наиболее низком энергетическом состоянии, называемым основным . Если передать ядру энергию, оно перейдёт в возбуждённое состояние .

Расположение энергетических уровней ядра в первом приближении:

D = a e − b E ∗ {\displaystyle D=ae^{-b{\sqrt {E^{*}}}}} , где:

D {\displaystyle D} - среднее расстояние между уровнями,

Заряд ядра

Ядро любого атома заряжено положительно. Носителем положительного заряда является протон. Поскольку заряд протона численно равен заряду электрона $e$, то можно записать что заряд ядра равен $+Ze$ ($Z$ -- целое число, которое указывает на порядковый номер химического элемента в периодической системе химических элементов Д. И. Менделеева). Число $Z$ также определяет количество протонов в ядре и количество электронов в атоме. Поэтому его называют атомным номером ядра. Электрический заряд является одной с основных характеристик атомного ядра, от которой зависят оптические, химические и другие свойства атомов.

Масса ядра

Другой важной характеристикой ядра является его масса. Массу атомов и ядер принято выражать в атомных единицах массы (а.е.м.). за атомную единицу массы принято считать $1/12$ массы нуклида углерода $^{12}_6C$:

где $N_A=6,022\cdot 10^{23}\ моль^-1$ -- число Авогадро.

Согласно соотношению Эйнштейна $E=mc^2$, массу атомов также выражают в единицах энергии. Поскольку:

  • масса протона $m_p=1.00728\ а.е.м.=938,28\ МэВ$,
  • масса нейтрона $m_n=1.00866\ а.е.м.=939,57\ МэВ$,
  • масса электрона $m_e=5,49\cdot 10^{-4}\ а.е.м.=0,511\ МэВ$,

Как видно масса электрона пренебрежительно мала в сравнении с массой ядра, то масса ядра почти совпадает с массой атома.

Масса отличается от целых чисел. Масса ядра, выражена в а.е.м. и округлена до целого числа называется массовым числом, обозначается буквой $A$ и определяет количество нуклонов в ядре. Число нейтронов в ядре равно $N=A-Z$.

Для обозначения ядер применяется символ $^A_ZX$, где под $X$ подразумевается химический символ данного элемента. Атомные ядра с одинаковым количеством протонов но разными массовыми числами называют изотопами. В некоторых элементов число стабильных и нестабильных изотопов достигает десятков, например, уран имеет $14$ изотопов: от $^{227}_{92}U\ $до $^{240}_{92}U$.

Большинство химических элементов существующих в природе, представляют собой смесь нескольких изотопов. Именно наличие изотопов объясняет тот факт, что некоторые природные элементы имеют массу, которая отличается от целых чисел. Например, природный хлор состоит с $75\%$ $^{35}_{17}Cl$ и $24\%$ $^{37}_{17}Cl$, а его атомная масса равна $35,5$ а.е.м. в большинства атомов, кроме водорода, изотопы имеют почти одинаковые физические и химические свойства. Но за своими исключительно ядерными свойствами изотопы существенно разнятся. Одни с них могут быть стабильными, другие -- радиоактивными.

Ядра с одинаковыми массовыми числами, но разными значениями $Z$ называют изобарами, например, $^{40}_{18}Ar$, $^{40}_{20}Ca$. Ядра с одинаковым количеством нейтронов называют изотонами. Среди легких ядер встречаются так называемые «зеркальные» пары ядер. Это такие пары ядер в которых числа $Z$ и $A-Z$ меняются местами. Примерами таких ядер могут быть $^{13}_6C\ $и $^{13_7}N$ или $^3_1H$ и $^3_2He$.

Размер атомного ядра

Считая атомное ядро приблизительно сферическим, можно ввести понятия его радиуса $R$. Отметим, что в некоторых ядрах есть небольшое отклонение от симметрии в распределении электрического заряда. Кроме того, атомные ядра не статические, а динамические системы, и понятие радиуса ядра не можно представлять как радиус шара. По этой причине, за размеры ядра необходимо брать ту область, в которой проявляются ядерные силы.

При создании количественной теории рассеивания $\alpha $ -- частиц Э. Резерфорд исходил с предположений, что атомное ядро и $\alpha $ -- частица взаимодействуют по закону Кулона, т.е. что электрическое поле вокруг ядра имеет сферическую симметрию. Рассеивание $\alpha $ -- частицы происходит в полном соответствии с формулой Резерфорда:

Это имеет место для $\alpha $ -- частиц энергия которых $E$ достаточно мала. При этом частица не способна преодолеть кулоновский потенциальный барьер и в последствии не достигает области действия ядерных сил. С увеличением энергии частицы до некоторого граничного значения $E_{гр}$ $\alpha $ -- частица достигает этой границы. Тога в рассеивании $\alpha $ -- частиц наблюдается отклонение от формулы Резерфорда. Из соотношения

Опыты показывают, что радиус $R$ ядра зависит от количества нуклонов, которые входят до состава ядра. Эта зависимость может выражаться эмпирической формулой:

где $R_0$ -- постоянная, $A$ -- массовое число.

Размеры ядер определяют экспериментально по рассеиванию протонов, быстрых нейтронов или электронов высоких энергий. Существует ряд других непрямых методов определения размеров ядер. Они обоснованы на связи время жизни $\alpha $ -- радиоактивных ядер с энергией выпущенных ими $\alpha $ -- частиц; на оптических свойствах, так называемых, мезоатомов, в которых один с электронов временно захвачен мюоном; на сравнении энергии связи пары зеркальных атомов. Эти методы подтверждают эмпирическую зависимость $R=R_0A^{1/3}$, а также с помощью этих измерений установлено значение постоянной $R_0=\left(1,2-1,5\right)\cdot 10^{-15}\ м$.

Отметим также, что за единицу расстояний в атомной физике и физике элементарных частиц берут единицу измерения «ферми», который равняется ${10}^{-15}\ м$ (1 ф=${10}^{-15}\ м)$.

Радиусы атомных ядер зависят от их массового числа и находятся в промежутке от $2\cdot 10^{-15}\ м\ до\ 10^{-14}\ м$. если с формулы $R=R_0A^{1/3}$ выразить $R_0$ и записать его в виде $\left(\frac{4\pi R^3}{3A}\right)=const$, то можно увидеть что на каждый нуклон припадает приблизительно одинаковый объем. Это значит, что плотность ядерного вещества для всех ядер так же приблизительно одинакова. Выходя с существующих ведомостей о размерах атомных ядер, найдем среднее значение плотности вещества ядра:

Как видим, плотность ядерного вещества очень большая. Это обусловлено действием ядерных сил.

Энергия связи. Дефект масс ядер

При сравнении суммы масс покоя нуклонов, которые образуют ядро с массой ядра было замечено, что для всех химических элементов справедливо неравенство:

где $m_p$ -- масса протона, $m_n$ -- масса нейтрона, $m_я$ -- масса ядра. Величину $\triangle m$, что выражает разницу масс между массой нуклонов, которые образуют ядро, и массой ядра, называют дефектом массы ядра

Важные сведения о свойствах ядра можно получить не вникая в подробности взаимодействия между нуклонами ядра, на основании закона сохранения энергии и закона пропорциональности массы и энергии. По сколько в результате любого изменения массы $\triangle m$ происходит соответствующее изменение энергии $\triangle E$ ($\triangle E=\triangle mc^2$), то при образовании ядра выделяется определенное количество энергии. По закону сохранения энергии такое же количество энергии необходимо, чтоб разделить ядро на составляющие частицы, т.е. отдалить нуклоны один от одного на такие же расстояния, при которых отсутствует взаимодействие между ними. Эту энергию называют энергией связи ядра.

Если ядро имеет $Z$ протонов и массовое число $A$, то энергия связи равна:

Замечание 1

Отметим, что этой формулой не совсем удобно пользоваться, т.к. в таблицах приводиться не массы ядер, а массы, которые определяют массы нейтральных атомов. Поэтому для удобства вычислений формулу преобразуют таким образом, чтобы в нее входили массы атомов, а не ядер. С этой целью в правой части формулы добавим и отнимем массу $Z$ электронов $(m_e)$. Тогда

\c^2==\leftc^2.\]

$m_{{}^1_1H}$ -- масса атома водорода, $m_a$ -- масса атома.

В ядерной физике энергию часто выражают в мегаэлектрон-вольтах (МэВ). Если речь идет о практическом применении ядерной энергии, то ее измеряют в джоулях. В случае сравнения энергии двух ядер используют массовую единицу энергии -- соотношение между массой и энергией ($E=mc^2$). Массовая единица энергии ($le$) равняется энергии, что соответствует массе в одну а.е.м. Она равняется $931,502$ МэВ.

Рисунок 1.

Кроме энергии, важное значение имеет удельная энергия связи -- энергия связи, которая припадает на один нуклон: $w=E_{св}/A$. Эта величина меняется сравнительно медленно по сравнению со сменой массового числа $A$, имея почти постоянную величину $8.6$ МэВ в средней части периодической системы и уменьшается до ее краев.

Для примера рассчитаем дефект массы, энергию связи и удельную энергию связи ядра атома гелия.

Дефект массы

Энергия связи в МэВ: $E_{св}=\triangle m\cdot 931,502=0,030359\cdot 931,502=28,3\ МэВ$;

Удельная энергия связи: $w=\frac{E_{св}}{A}=\frac{28,3\ МэВ}{4\approx 7.1\ МэВ}.$

Задолго до появления достоверных данных о внутреннем устройстве всего сущего греческие мыслители представляли себе материю в виде мельчайших огненных частиц, которые находились в постоянном движении. Вероятно, это видение мирового устройства вещей было выведено из чисто логических умозаключений. Несмотря на некоторую наивность и абсолютную бездоказательность этого утверждения, оно оказалось верным. Хотя подтвердить смелую догадку ученые смогли лишь двадцать три века спустя.

Строение атомов

В конце XIX века были исследованы свойства разрядной трубки, через которую пропущен ток. Наблюдения показали, что при этом испускается два потока частиц:

Отрицательные частицы катодных лучей были названы электронами. В дальнейшем частицы с тем же отношением заряда к массе были обнаружены во многих процессах. Электроны казались универсальными составляющими различных атомов, довольно легко отделяющимися при бомбардировке ионов и атомов.

Частички, несущие положительный заряд, представлялись осколками атомов после потери ими одного или нескольких электронов. На самом деле положительные лучи представляли собой группы атомов, лишенных отрицательных частиц, и вследствие этого имеющих положительный заряд.

Модель Томпсона

На основании опытов было выяснено, что положительные и отрицательные частички представляли суть атома, были его составляющими. Английский ученый Дж. Томсон предложил свою теорию. По его мнению, строение атома и атомного ядра представляли собой некую массу, в которой отрицательные заряды были втиснуты в положительно заряженный шар, как изюм в кекс. Компенсация зарядов делала «кекс» электрически нейтральным.

Модель Резерфорда

Молодой американский ученый Резерфорд, анализируя треки, оставшиеся после альфа-частиц, пришел к выводу, что модель Томпсона несовершенна. Некоторые альфа-частицы отклонялись на небольшие углы - в 5-10 o . В редких случаях альфа-частицы отклонялись на большие углы в 60-80 o , а в исключительных случаях углы были очень большими - 120-150 o . Модель атома Томпсона не могла объяснить такую разницу.

Резерфорд предлагает новую модель, объясняющую строение атома и атомного ядра. Физика процессов утверждает, что атом должен быть пуст на 99%, с крошечным ядром и вращающимися вокруг него электронами, которые движутся по орбитам.

Отклонения при ударах он объясняет тем, что частицы атома имеют собственные электрические заряды. Под воздействием бомбардирующих заряженных частиц атомные элементы ведут себя как обыкновенные заряженные тела в макромире: частицы с одинаковыми зарядами отталкиваются друг от друга, а с противоположными - притягиваются.

Состояние атомов

В начале прошлого века, когда были запущены первые ускорители элементарных частиц, все теории, объяснявшие строение атомного ядра и самого атома, ждали экспериментальной проверки. К тому времени были уже досконально изучены взаимодействия альфа- и бета-лучей с атомами. Вплоть до 1917 года считалось, что атомы либо стабильны, либо радиоактивны. Стабильные атомы нельзя расщепить, распад радиоактивных ядер невозможно контролировать. Но Резерфорду удалось опровергнуть это мнение.

Первый протон

В 1911 году Э. Резерфорд выдвинул идею о том, что все ядра состоят из одинаковых элементов, основой для которых является атом водорода. На эту идею ученого натолкнул важный вывод предыдущих изучений строения вещества: массы всех химических элементов делятся без остатка на массу водорода. Новое предположение открывало невиданные возможности, позволяющие по-новому видеть строение атомного ядра. Ядерные реакции должны были подтвердить или опровергнуть новую гипотезу.

Опыты проводились в 1919 году с атомами азота. Бомбардируя их альфа-частицами, Резерфорд добился удивительного результата.

Атом N поглотил альфа-частицу, превратился после этого в атом кислорода О 17 и испустил ядро водорода. Это стало первым искусственным превращением атома одного элемента в другой. Подобный опыт вселял надежду на то, что строение атомного ядра, физика существующих процессов позволяют осуществлять и другие ядерные превращения.

Ученый использовал в своих опытах метод сцинтилляции - вспышки. По частоте вспышек он делал выводы о том, каким является состав и строение атомного ядра, о характеристиках рожденных частиц, об их атомной массе и порядковом номере. Неизвестная частица было названа Резерфордом протоном. Она имела все характеристики атома водорода, лишенного своего единственного электрона - одиночный положительный заряд и соответствующую массу. Таким образом было доказано, что протон и ядро водорода являются одними и теми же частицами.

В 1930 году, когда были построены и запущены первые большие ускорители, модель атома Резерфорда удалось проверить и доказать: каждый атом водорода состоит из одинокого электрона, положение которого невозможно определить, и рыхлого атома с одиноким положительным протоном внутри. Поскольку при бомбардировке из атома могут влетать протоны, электроны и альфа-частицы, ученые думали, что они и есть составляющие любого ядра атома. Но подобная модель атома ядра казалась неустойчивой - электроны были слишком велики для того, чтобы умещаться в ядре, кроме этого, существовали серьезные затруднения, связанные с нарушением закона количества движения и сохранения энергии. Эти два закона, как строгие бухгалтеры, говорили о том, что количество движения и масса при бомбардировке исчезают в неизвестном направлении. Поскольку эти законы являлись общепринятыми, следовало отыскать объяснения для подобной утечки.

Нейтроны

Ученые всего мира ставили эксперименты, направленные на открытие новых составляющих ядер атомов. В 1930-х годах немецкие физики Беккер и Боте бомбардировали атомы бериллия альфа-частицами. При этом было зарегистрировано неизвестное излучение, которое было решено назвать G-лучами. Подробные исследования рассказали о некоторых особенностях новых лучей: они могла распространяться строго по прямой, не взаимодействовали с электрическими и магнитными полями, обладали высокой проникающей способностью. Позднее частицы, образующие этот вид излучения, были найдены при взаимодействии альфа-частиц с другими элементами - бором, хромом и прочими.

Гипотеза Чедвика

Тогда Джеймс Чедвик, коллега и ученик Резерфорда, в журнале «Нэйчур» дал короткое сообщение, которое позднее стало общеизвестным. Чедвик обратил внимание на тот факт, что противоречия в законах сохранения легко разрешаемы, если допустить, что новое излучение является потоком нейтральных частиц, каждая из которых имеет массу, приблизительно равную массе протона. Рассматривая это предположение, физики существенно дополнили гипотезу, объясняющую строение атомного ядра. Кратко суть дополнений сводилась к новой частице и ее роли в строении атома.

Свойства нейтрона

Обнаруженной частице было дано имя «нейтрон». Новооткрытые частички не образовывали вокруг себя электромагнитных полей, легко проходили через вещество, не теряя при этом энергии. При редких столкновениях с легкими ядрами атомов нейтрон в состоянии выбить из атома ядро, теряя при этом значительную часть своей энергии. Строение атомного ядра предполагало наличие различного количества нейтронов в каждом веществе. Атомы с одинаковым зарядом ядра, но с различным количеством нейтронов получили название изотопов.

Нейтроны послужили отличной заменой альфа-частицам. В настоящее время именно их используют для того, чтобы изучить строение атомного ядра. Кратко их значение для науки описать невозможно, но именно благодаря бомбардировке нейтронами атомных ядер физики смогли получить изотопы практически всех известных элементов.

Состав ядра атома

В настоящее время строение атомного ядра представляет собой совокупность протонов и нейтронов, скрепленных между собой ядерными силами. Например, ядро гелия представляет собой комочек из двух нейтронов и двух протонов. Легкие элементы имеют практически равное число протонов и нейтронов, у тяжелых элементов количество нейтронов значительно больше.

Такая картина строения ядра подтверждается экспериментами на современных больших ускорителях с быстрыми протонами. Электрические силы отталкивания протонов уравновешиваются ядреными силами, которые действуют только в самом ядре. Хотя природа ядерных сил еще до конца не изучена, их существование является практически доказанным и полностью объясняет строение атомного ядра.

Связь массы и энергии

В 1932 камера Вильсона запечатлела удивительный фотоснимок, доказывающий существование положительных заряженных частиц, с массой электрона.

До этого положительные электроны были предсказаны теоретически П. Дираком. Реальный положительный электрон был обнаружен также в космическом излучении. Новую частичку назвали позитроном. При столкновении со своим двойником - электроном, происходит аннигиляция - взаимное уничтожение двух частиц. При этом освобождается определенное количество энергии.

Таким образом, теория, разработанная для макромира, полностью подходила для описания поведения мельчайших элементов вещества.

Новое на сайте

>

Самое популярное